浏览全部资源
扫码关注微信
1.中国人民大学数学学院,北京 100872
2.中国人民大学法学院,北京 100872
3.中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京 100190
[ "张昳斐(1997- ),女,中国人民大学数学学院硕士生,主要研究方向为区块链与加密货币监管。" ]
[ "袁勇(1980- ),男,博士,中国人民大学数学学院教授,主要研究方向为区块链、计算经济学和分布式人工智能。" ]
[ "杨东(1975- ),男,博士,中国人民大学法学院教授,主要研究方向为金融科技、区块链、数字货币。" ]
[ "王飞跃(1961- ),男,博士,中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任,澳门科技大学特聘教授,主要研究方向为平行系统的方法与应用、社会计算、平行智能、知识自动化。" ]
收稿日期:2025-03-04,
修回日期:2025-05-06,
纸质出版日期:2025-06-15
移动端阅览
张昳斐,袁勇,杨东等.面向加密货币反洗钱的智能监管研究:模型、方法与应用[J].智能科学与技术学报,2025,07(02):165-183.
ZHANG Yifei,YUAN Yong,YANG Dong,et al.Intelligent regulation for cryptocurrency anti-money laundering: models, methods, and applications[J].Chinese Journal of Intelligent Science and Technology,2025,07(02):165-183.
张昳斐,袁勇,杨东等.面向加密货币反洗钱的智能监管研究:模型、方法与应用[J].智能科学与技术学报,2025,07(02):165-183. DOI: 10.11959/j.issn.2096-6652.202522.
ZHANG Yifei,YUAN Yong,YANG Dong,et al.Intelligent regulation for cryptocurrency anti-money laundering: models, methods, and applications[J].Chinese Journal of Intelligent Science and Technology,2025,07(02):165-183. DOI: 10.11959/j.issn.2096-6652.202522.
近年来,基于区块链技术的加密货币市场正在快速发展,新兴商业模式和应用场景不断涌现,形成了数万亿美元规模的新经济体系。加密货币具有去中心化、匿名性和易于跨境流通等特性,极大地丰富和发展了以法定货币为核心的主流金融体系,同时也被广泛应用于洗钱等非法金融活动。因此,面向加密货币反洗钱的监管研究成为新兴热点领域,而机器学习和人工智能则成为加密货币交易行为监管、交易网络分析、安全风险评估等领域的主要研究方法。首先,系统性地梳理了近年来加密货币反洗钱的智能监管研究进展,从传统机器学习、深度学习、集成学习、图分析和启发式方法等维度归纳总结了反洗钱监管研究的主要模型、方法和应用模式。同时,整理了加密货币反洗钱研究文献中的常用数据集,并基于Elliptic数据集给出现有模型和算法的性能对比。最后,讨论了加密货币反洗钱的研究挑战与未来发展方向,以期为加密货币和去中心化金融产业的繁荣与健康发展提供有益的参考和借鉴。
In recent years
blockchain-enabled cryptocurrency market has been rapidly evolving to a trillion-dollar economic system with various kinds of emerging business models and application scenarios. Cryptocurrencies
characterized by decentralization
anonymity
and ease of cross-border circulation
have significantly enriched and evolved the mainstream financial system centered around fiat currencies. However
they are also extensively used in illegal financial activities including money laundering. As such
research on anti-money laundering (AML) regulation for cryptocurrencies has become a burgeoning field of interest
with machine learning and artificial intelligence (AI) emerging as primary methodologies in areas such as cryptocurrency transaction monitoring
transaction network analysis
and security risk assessment. First
the recent research progress on intelligent AML regulation for cryptocurrencies was systematically reviewed. The main models
methods
and application patterns in AML regulatory research were summarized from multiple dimensions
including traditional machine learning
deep learning
ensemble learning
graph analysis
and heuristic approaches. Meanwhile
commonly used datasets in cryptocurrency AML research were compiled
and a performance comparison of existing models and algorithms was provided based on the Elliptic dataset. Finally
the research challenges and future directions of cryptocurrency AML were discussed
aiming to offer valuable references and insights for the prosperity and healthy development of the cryptocurrency and decentralized finance industry.
LIU F, FAN H Y, QI J Y. Blockchain technology, cryptocurrency: entropy-based perspective[J]. Entropy, 2022, 24(4): 557.
LIU F, FENG Z F, QI J Y. A blockchain-based digital asset platform with multi-party certification[J]. Applied Sciences, 2022, 12(11): 5342.
刘峰, 江佳齐, 黄灏. 面向加密货币交易介质及过程的安全综述[J]. 信息网络安全, 2024, 24(3): 330-351.
LIU F, JIANG J Q, HUANG H. Security overview of cryptocurrency trading media and processes[J]. Netinfo Security, 2024, 24(3): 330-351.
王佳鑫, 颜嘉麒, 毛谦昂. 加密数字货币监管技术研究综述[J]. 计算机应用, 2023, 43(10): 2983-2995.
WANG J X, YAN J Q, MAO Q A. Overview of cryptocurrency regulatory technologies research[J]. Journal of Computer Applications, 2023, 43(10): 2983-2995.
KHANUJA H K, ADANE D S. Forensic analysis for monitoring database transactions[C]//Security in Computing and Communications. Heidelberg: Springer, 2014: 201-210.
SALEHI A, GHAZANFARI M, FATHIAN M. Data mining techniques for anti money laundering[J]. International Journal of Applied Engineering Research, 2017, 12(20): 10084-10094.
RON D, SHAMIR A. Quantitative analysis of the full Bitcoin transaction graph[C]//Financial Cryptography and Data Security. Heidelberg: Springer, 2013: 6-24.
REID F, HARRIGAN M. An analysis of anonymity in the Bitcoin system[C]//Security and Privacy in Social Networks. New York: Springer, 2012: 197-223.
WU J J, LIN D, FU Q S, et al. Toward understanding asset flows in crypto money laundering through the lenses of Ethereum heists[J]. IEEE Transactions on Information Forensics and Security, 2023, 19: 1994-2009.
MEIKLEJOHN S, POMAROLE M, JORDAN G, et al. A fistful of Bitcoins: characterizing payments among men with no names[C]//Proceedings of the 2013 Conference on Internet Measurement Conference. New York: ACM, 2013: 127-140.
WEBER M, DOMENICONI G, CHEN J, et al. Anti-money laundering in Bitcoin: experimenting with graph convolutional networks for financial forensics[J ] . arXiv preprint, 2019: arXiv: 1908.02591 .
LAL B, AGARWAL R, SHUKLA S K. Understanding money trails of suspicious activities in a cryptocurrency-based blockchain[J ] . arXiv preprint, 2021: arXiv: 2108.11818 .
NAN L H, TAO D C. Bitcoin mixing detection using deep autoencoder[C]//Proceedings of the 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). Piscataway: IEEE Press, 2018: 280-287.
WU J J, LIU J L, CHEN W L, et al. Detecting mixing services via mining Bitcoin transaction network with hybrid motifs[J ] . IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2237-2249.
HU Y N, SENEVIRATNE S, THILAKARATHNA K, et al. Characterizing and detecting money laundering activities on the Bitcoin network[J ] . arXiv preprint, 2019: arXiv: 1912.12060 .
ALARAB I, PRAKOONWIT S, NACER M I. Competence of graph convolutional networks for anti-money laundering in Bitcoin blockchain[C]//Proceedings of the 2020 5th International Conference on Machine Learning Technologies. New York: ACM, 2020: 23-27.
LORENZ J, SILVA M I, APARÍCIO D, et al. Machine learning methods to detect money laundering in the bitcoin blockchain in the presence of label scarcity[C]//Proceedings of the First ACM International Conference on AI in Finance. New York: ACM, 2021: 1-8.
CHEN B J, WEI F S, GU C X. Bitcoin theft detection based on supervised machine learning algorithms[J]. Security and Communication Networks, 2021(1): 6643763.
CHANG T H, SVETINOVIC D. Improving Bitcoin ownership identification using transaction patterns analysis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(1): 9-20.
ZHANG R, ZHANG G F, LIU L, et al. Anomaly detection in Bitcoin information networks with multi-constrained meta path[J]. Journal of Systems Architecture, 2020, 110: 101829.
SHAYEGAN M J, SABOR H R, UDDIN M, et al. A collective anomaly detection technique to detect crypto wallet frauds on Bitcoin network[J]. Symmetry, 2022, 14(2): 328.
YANG L X, DONG X W, XING S Y, et al. An abnormal transaction detection mechanim on Bitcoin[C]//Proceedings of the 2019 International Conference on Networking and Network Applications (NaNA). Piscataway: IEEE Press, 2019: 452-457.
BAEK H, OH J, KIM C Y, et al. A model for detecting cryptocurrency transactions with discernible purpose[C]//Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). Piscataway: IEEE Press, 2019: 713-717.
NERURKAR P, BHIRUD S, PATEL D, et al. Supervised learning model for identifying illegal activities in Bitcoin[J]. Applied Intelligence, 2021, 51(6): 3824-3843.
LIANG J Q, LI L J, CHEN W Y, et al. Targeted addresses identification for Bitcoin with network representation learning[C]//Proceedings of the 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). Piscataway: IEEE Press, 2019: 158-160.
CHANG Y L, HSIANG K L, FU C T. A systematic review of detecting illicit bitcoin transactions[J]. Procedia Computer Science, 2022, 207: 3217-3225.
LIN Y J, WU P W, HSU C H, et al. An evaluation of Bitcoin address classification based on transaction history summarization[C]//Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). Piscataway: IEEE Press, 2019: 302-310.
ALOTIBI J, ALMUTANNI B, ALSUBAIT T, et al. Money laundering detection using machine learning and deep learning[J]. International Journal of Advanced Computer Science and Applications, 2022, 13(10): 732-738.
FERRETTI S, D'ANGELO G, GHINI V. On the use of heterogeneous graph neural networks for detecting malicious activities: a case study with cryptocurrencies[C]//Proceedings of the 4th International Workshop on Open Challenges in Online Social Networks. New York: ACM, 2024: 33-40.
LO W W, KULATILLEKE G K, SARHAN M, et al. Inspection-L: self-supervised GNN node embeddings for money laundering detection in Bitcoin[J]. Applied Intelligence, 2023, 53(16): 19406-19417.
BELLEI C, XU M H, PHILLIPS R, et al. The shape of money laundering: subgraph representation learning on the blockchain with the Elliptic2 dataset[J ] . arXiv preprint, 2024: arXiv: 2404.19109 .
HUMRANAN P, SUPRATID S. A study on GCN using focal loss on class-imbalanced Bitcoin transaction for anti-money laundering detection[C]//Proceedings of the 2023 International Electrical Engineering Congress (iEECON). Piscataway: IEEE Press, 2023: 101-104.
ALARAB I, PRAKOONWIT S. Robust recurrent graph convolutional network approach based sequential prediction of illicit transactions in cryptocurrencies[J]. Multimedia Tools and Applications, 2024, 83(20): 58449-58464.
QIAO C B, TONG Y Z, XIONG A, et al. Block-chain abnormal transaction detection method based on dynamic graph representation[M]// Game Theory for Networks. Cham: Springer, 2022: 3-15.
SINGH A, GUPTA A, WADHWA H, et al. Temporal debiasing using adversarial loss based GNN architecture for crypto fraud detection[C]//Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). Piscataway: IEEE Press, 2021: 391-396.
MOHAN A, KARTHIKA P V, SANKAR P, et al. Improving anti-money laundering in Bitcoin using evolving graph convolutions and deep neural decision forest[J]. Data Technologies and Applications, 2023, 57(3): 313-329.
PAN Y C. Enhancing predictive models for illicit activities in the Bitcoin transaction network using advanced graph analytical techniques[J]. Applied and Computational Engineering, 2024, 48(1): 78-86.
ADLOORI H, DASANAPU V, MERGU A C. Graph network models to detect illicit transactions in block chain[J ] . arXiv preprint, 2024: arXiv: arXiv: 2410.07150 .
HARLEV M A, SUN YIN H H, LANGENHELDT K C, et al. Breaking bad: de-anonymising entity types on the Bitcoin blockchain using supervised machine learning[C]//Proceedings of the 51st Hawaii International Conference on System Sciences 2018. Honolulu: Hawaii International Conference on System Sciences (HICSS), 2018: 3497-3506.
ALARAB I, PRAKOONWIT S, NACER M I. Comparative analysis using supervised learning methods for anti-money laundering in Bitcoin[C]//Proceedings of the 2020 5th International Conference on Machine Learning Technologies. New York: ACM, 2020: 11-17.
SUN YIN H H, LANGENHELDT K, HARLEV M, et al. Regulating cryptocurrencies: a supervised machine learning approach to de-anonymizing the Bitcoin blockchain[J]. Journal of Management Information Systems, 2019, 36(1): 37-73.
JULLUM M, LØLAND A, HUSEBY R B, et al. Detecting money laundering transactions with machine learning[J]. Journal of Money Laundering Control, 2020, 23(1): 173-186.
VASSALLO D, VELLA V, ELLUL J. Application of gradient boosting algorithms for anti-money laundering in cryptocurrencies[J]. SN Computer Science, 2021, 2(3): 143.
FARRUGIA S, ELLUL J, AZZOPARDI G. Detection of illicit accounts over the ethereum blockchain[J]. Expert Systems with Applications, 2020, 150: 113318.
HEGADI R, TRIPATHI B, NAMRATHA S, et al. Anti-money laundering analytics on the Bitcoin transactions[C]//Information Security, Privacy and Digital Forensics. Singapore: Springer, 2023: 405-418.
LI Z Y, YAO R Z, YANG D, et al. BELFAL: a blockchain-based ensemble learning framework for anti-money laundering in crypto-currency markets[C]//Proceedings of the 2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS). Piscataway: IEEE Press, 2024: 520-527.
LEE C, MAHARJAN S, KO K, et al. Toward detecting illegal transactions on Bitcoin using machine-learning methods[C]//Blockchain and Trustworthy Systems. Singapore: Springer, 2019: 520-533.
KUMAR N, SINGH A, HANDA A, et al. Detecting malicious accounts on the ethereum blockchain with supervised learning[C]//Cyber Security Cryptography and Machine Learning. Cham: Springer, 2020: 94-109.
MD A Q, SATYA SREE NARAYANAN S M, SABIREEN H, et al. A novel approach to detect fraud in Ethereum transactions using stacking[J]. Expert Systems, 2023, 40(7): e13255.
UMER Q, LI J W, ASHRAF M R, et al. Ensemble deep learning-based prediction of fraudulent cryptocurrency transactions[J]. IEEE Access, 2023, 11: 95213-95224.
BELLOMARINI L, LAURENZA E, SALLINGER E, et al. Rule-based anti-money laundering in financial intelligence units: experience and vision[C]//Proceedings of the 14th International Rule Challenge, 4th Doctoral Consortium, and 6th Industry Track @ RuleML+RR 2020. Berlin: Springer, 2020: 133-144.
RAJPUT Q, KHAN N S, LARIK A, et al. Ontology based expert-system for suspicious transactions detection[J]. Computer and Information Science, 2013, 7(1): 103-114.
PANIGRAHI S, KUNDU A, SURAL S, et al. Credit card fraud detection: a fusion approach using Dempster-Shafer theory and Bayesian learning[J]. Information Fusion, 2009, 10(4): 354-363.
LIU F, LI Z H, JIA K, et al. Bitcoin address clustering based on change address improvement[J]. IEEE Transactions on Computational Social Systems, 2024, 11(6): 8094-8105.
WANG Q Y, TSAI W T, SHI T Y. GraphALM: active learning for detecting money laundering transactions on blockchain networks[J]. IEEE Network, 2025, 39(2): 294-303.
OLUTIMEHIN A T. The Synergistic role of machine learning, deep learning, and reinforcement learning in strengthening cyber security measures for crypto currency platforms[J]. Asian Journal of Research in Computer Science, 2025,18(3): 190-212.
SENATOR T E, GOLDBERG H G, WOOTON J, et al. The FinCEN artificial intelligence system: identifying potential money laundering from reports of large cash transactions[C]//Proceedings of the Seventh Conference on Innovative Applications of Artificial Intelligence. Palo Alto: AAAI Press, 1995: 156-170.
SAVAGE D, ZHANG X Z, WANG Q M, et al. Detection of money laundering groups: supervised learning on small networks[J]. Proceedings of the AAAI-17 Workshop on AI and Operations Research for Social Good. Palo Alto: AAAI Press, 2017: 43-49.
ZHANG Y, TRUBEY P. Machine learning and sampling scheme: an empirical study of money laundering detection[J]. Computational Economics, 2019, 54(3): 1043-1063.
ELMOUGY Y, LIU L. Demystifying fraudulent transactions and illicit nodes in the Bitcoin network for financial forensics[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 3979-3990.
SONG J L, GU Y J. HBTBD: a heterogeneous Bitcoin transaction behavior dataset for anti-money laundering[J]. Applied Sciences, 2023, 13(15): 8766.
CARLETTI R, LUO X J, ADELOPO I. Understanding criminogenic features: case studies of cryptocurrencies-based financial crimes[J]. Journal of Financial Crime, 2025, 32(3): 681-705.
张俊, 袁勇, 王晓, 等. 量子区块链: 融合量子信息技术的区块链能否抵御量子霸权?[J]. 智能科学与技术学报, 2019, 1(4): 409-414.
ZHANG J, YUAN Y, WANG X, et al. Quantum blockchain: can blockchain integrated with quantum information technology resist quantum supremacy?[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(4): 409-414.
VENČKAUSKAS A, GRIGALIŪNAS Š, POCIUS L, et al. Machine learning in money laundering detection over blockchain technology[J]. IEEE Access, 2024, 13: 7555-7573.
丁文文, 王帅, 李娟娟, 等. 去中心化自治组织: 发展现状、分析框架与未来趋势[J]. 智能科学与技术学报, 2019, 1(2): 202-213.
DING W W, WANG S, LI J J, et al. Decentralized autonomous organizations: the state of the art, analysis framework and future trends[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(2): 202-213.
SHAFIN K M, RENO S. Integrating blockchain and machine learning for enhanced anti-money laundering system[J]. International Journal of Information Technology, 2025, 17(4): 2439-2447.
王飞跃. DeepSeek呼唤DeepThink: 重视AI治理与社会范式变革[J]. 智能科学与技术学报, 2025, 7(1): 1-3.
WANG F Y. DeepSeek calls DeepThink: rethinking AI governance and societal paradigm shift[J]. Chinese Journal of Intelligent Science and Technology, 2025, 7(1): 1-3.
王飞跃. 新AI与智能科技前沿: 从PAPAI++到新产业生态[J]. 智能科学与技术学报, 2024, 6(4): 413-415.
WANG F Y. New AI for new frontier of intelligent science and technology: from PAPAI++ to new enterprise ecology[J]. Chinese Journal of Intelligent Science and Technology, 2024, 6(4): 413-415.
ALNAQBI M, AL-ALI M M, ALREMEITHI M, et al. Different techniques and algorithms to combat the issue of money laundering in Bitcoin[C]//Proceedings of the 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA). Piscataway: IEEE Press, 2022: 122-126.
TURNER A B, MCCOMBIE S, UHLMANN A J. Analysis techniques for illicit Bitcoin transactions[J]. Frontiers in Computer Science, 2020, 2: 600596.
DOU Y T, LIU Z W, DENG Y T, et al. Enhancing graph neural network-based fraud detectors against camouflaged fraudsters[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 315-324.
王飞跃, 王艳芬, 陈薏竹, 等. 联邦生态: 从联邦数据到联邦智能[J]. 智能科学与技术学报, 2020, 2(4): 305-311.
WANG F Y, WANG Y F, CHEN Y Z, et al. Federated ecology: from federated data to federated intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 305-311.
李娟娟, 王戈, 王晓, 等. 加密管理: 一种基于区块链的新型组织管理模式[J]. 智能科学与技术学报, 2022, 4(2): 145-156.
LI J J, WANG G, WANG X, et al. Crypto management: a novel organizational management model based on blockchain[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 145-156.
刘峰, 杨杰, 李志斌, 等. 一种基于区块链的泛用型数据隐私保护的安全多方计算协议[J]. 计算机研究与发展, 2021, 58(2): 281-290.
LIU F, YANG J, LI Z B, et al. A secure multi-party computation protocol for universal data privacy protection based on blockchain[J]. Journal of Computer Research and Development, 2021, 58(2): 281-290.
KONEČNÝ J, MCMAHAN H B, YU F X, et al. Federated learning: strategies for improving communication efficiency[J ] . arXiv preprint, 2016: arXiv: 1610.05492 .
KOVAČEVIĆ M, GRBIĆ T, ČAPKO D, et al. A zero-knowledge proof for the syndrome decoding problem in the lee metric[J ] . arXiv preprint, 2025: arXiv: 2502.11641 .
CHENG Y, GUO J J, LONG S Q, et al. Advanced financial fraud detection using GNN-CL model[J ] . arXiv preprint, 2024: arXiv: 2407.06529 .
LEI Y C, XIANG Y X, WANG Q, et al. Large language models for cryptocurrency transaction analysis: a Bitcoin case study[J ] . arXiv preprint, 2025: arXiv: 2501.18158 .
NICHOLLS J, KUPPA A, LE-KHAC N A. Large language model XAI approach for illicit activity Investigation in Bitcoin[J]. Neural Computing and Applications, 2024, 36(17): 18427-18445.
陈晓丰, 宋兆雄, 郑佩玉, 等. 一种多链协同治理的“以链治链”监管框架[J]. 计算机研究与发展, 2024, 61(9): 2290-2306.
CHEN X F, SONG Z X, ZHENG P Y, et al. A multichain-collaborating governing chain-supervising-chain supervision framework[J]. Journal of Computer Research and Development, 2024, 61(9): 2290-2306.
LIU F, HE S H, LI Z H, et al. An overview of blockchain efficient interaction technologies[J]. Frontiers in Blockchain, 2023, 6: 996070.
刘峰, 张嘉淏, 周俊杰, 等. 基于改进哈希时间锁的区块链跨链资产交互协议[J]. 计算机科学, 2022, 49(1): 336-344.
LIU F, ZHANG J H, ZHOU J J, et al. Novel Hash-time-lock-contract based cross-chain token swap mechanism of blockchain[J]. Computer Science, 2022, 49(1): 336-344.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构