浏览全部资源
扫码关注微信
1.北京交通大学计算机科学与技术学院,北京100044
2.中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京 100190
[ "洪东洋(2005- ),女,北京交通大学计算机科学与技术学院硕士生,主要研究方向为计算机视觉、深度学习。" ]
[ "张慧(1993- ),女,北京交通大学计算机科学与技术学院副教授,主要研究方向为复杂环境下的车辆感知、多传感器融合的协同检测、多模态目标检测、群体智能、平行视觉。" ]
[ "张译匀(2002- ),女,北京交通大学计算机科学与技术学院本科生,主要研究方向为计算机视觉、深度学习。" ]
[ "王雨桐(1994- ),女,博士,中国科学院自动化研究所多模态人工智能系统全国重点实验室副研究员,主要研究方向为计算机视觉、图像异常检测。" ]
[ "韩瑜珊(1996- ),女,北京交通大学计算机科学与技术学院博士生,主要研究方向为计算机视觉。" ]
[ "曹原周汉(1988- ),男,北京交通大学计算机科学与技术学院副教授,主要研究方向为计算机视觉、深度学习、自动驾驶。" ]
[ "李浥东(1982- ),男,北京交通大学计算机科学与技术学院副院长(主持工作)、教授、博士生导师,交通大数据与人工智能教育部重点实验室主任,主要研究方向为大数据智能、数据隐私保护、先进计算、智能交通等。" ]
收稿日期:2025-03-07,
修回日期:2025-06-09,
纸质出版日期:2025-06-15
移动端阅览
洪东洋,张慧,张译匀等.车路群智协同感知方法综述[J].智能科学与技术学报,2025,07(02):143-164.
HONG Dongyang,ZHANG Hui,ZHANG Yiyun,et al.A review of collaborative intelligent perception methods for vehicle-road systems[J].Chinese Journal of Intelligent Science and Technology,2025,07(02):143-164.
洪东洋,张慧,张译匀等.车路群智协同感知方法综述[J].智能科学与技术学报,2025,07(02):143-164. DOI: 10.11959/j.issn.2096-6652.202528.
HONG Dongyang,ZHANG Hui,ZHANG Yiyun,et al.A review of collaborative intelligent perception methods for vehicle-road systems[J].Chinese Journal of Intelligent Science and Technology,2025,07(02):143-164. DOI: 10.11959/j.issn.2096-6652.202528.
单车智能系统在感知层面存在一定的局限性,如超视距感知能力不足、缺乏全局环境感知视角、在极端场景下的感知稳定性受限等。为提升车辆感知能力,车路群智协同感知技术应运而生。该技术通过多个智能体(如车辆、基础设施等)共享感知信息,并对信息进行整合和分析,获取更全面、准确的环境认知。聚焦于车路群智协同感知方法的最新进展:首先,介绍车路群智协同感知方法的基础技术支撑;其次,根据数据处理和交互方法,将其划分为4类协同模式;然后,深入探讨了3种主要的协同感知方法以及常用的大规模协同感知数据集;最后,讨论了车路群智协同感知技术面临的挑战和未来研究展望。车路群智协同感知方法有助于弥补单一智能体感知的不足,实现对环境的全面感知。
The intelligent system of a single vehicle has certain perception limitations
such as the inability to perceive beyond visual range
the lack of global perception capabilities
and restricted perception capabilities in extreme situations. To enhance vehicle perception capabilities
vehicle-road collaborative intelligent perception technology has emerged. This technology enables multiple intelligent agents (such as vehicles
infrastructure
etc.) to share perceived information
integrate and analyze it
and thereby gain a more comprehensive and accurate understanding of the environment. This paper focuses on the latest developments in vehicle-road collaborative intelligent perception methods. Firstly
it introduces the fundamental technological support for vehicle-road collaborative intelligent perception methods. Secondly
it categorizes collaborative modes into four types based on data processing and interaction methods. Then
it delves into three primary collaborative perception methods and commonly used large-scale collaborative perception datasets. Finally
it discusses the challenges faced by vehicle-road collaborative intelligent perception technology and the outlook for future research. Vehicle-road collaborative intelligent perception methods help to compensate for the deficiencies of single-agent perception and achieve comprehensive environmental perception.
刘泽禹, 张慧, 李浥东. 面向自动驾驶的感知决策一体化综述[J]. 智能科学与技术学报, 2025, 7(1): 4-20.
LIU Z Y, ZHANG H, LI Y D. A review of integrated perception and decision-making for autonomous driving[J]. Chinese Journal of Intelligent Science and Technology, 2025, 7(1): 4-20.
娄云洁, 艾明飞, 庄术洁, 等. DK-Port: 基于大语言模型和强化学习的港口自动驾驶仿真环境构建与验证[J]. 智能科学与技术学报, 2025, 7(1): 98-113.
LOU Y J, AI M F, ZHUANG S J, et al. DK-Port: construction and validation of port autonomous driving simulation environment based on large language models and reinforcement learning[J]. Chinese Journal of Intelligent Science and Technology, 2025, 7(1): 98-113.
沈甜雨, 李志伟, 范丽丽, 等. 具身智能驾驶: 概念、方法、现状与展望[J]. 智能科学与技术学报, 2024, 6(1): 17-32.
SHEN T Y, LI Z W, FAN L L, et al. Embodied intelligent driving: concept, methods, the state of the art and beyond[J]. Chinese Journal of Intelligent Science and Technology, 2024, 6(1): 17-32.
黄峻, 田永林, 戴星原, 等. 基于深度学习的自动驾驶多模态轨迹预测方法: 现状及展望[J]. 智能科学与技术学报, 2023, 5(2): 180-199.
HUANG J, TIAN Y L, DAI X Y, et al. Deep learning-based multimodal trajectory prediction methods for autonomous driving: state of the art and perspectives[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(2): 180-199.
LUO G Y, ZHANG H, YUAN Q, et al. Complementarity-enhanced and redundancy-minimized collaboration network for multi-agent perception[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 3578-3586.
CHEN X H, DENG Y Q, DING H C, et al. Vehicle as a service (VaaS): leverage vehicles to build service networks and capabilities for smart cities[J]. IEEE Communications Surveys & Tutorials, 2024, 26(3): 2048-2081.
LI X, TIAN Y L, YE P J, et al. A novel scenarios engineering methodology for foundation models in metaverse[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(4): 2148-2159.
ZHANG H, LUO G Y, LI J L, et al. C2FDA: coarse-to-fine domain adaptation for traffic object detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12633-12647.
DORRI A, KANHERE S S, JURDAK R. Multi-agent systems: a survey[J]. IEEE Access, 2018, 6: 28573-28593.
SCHIEGG F A, LLATSER I, BISCHOFF D, et al. Collective perception: a safety perspective[J]. Sensors, 2021, 21(1): 159.
SHAN M, NARULA K, WONG Y F, et al. Demonstrations of cooperative perception: safety and robustness in connected and automated vehicle operations[J]. Sensors, 2021, 21(1): 200.
丁飞, 张楠, 李升波, 等. 智能网联车路云协同系统架构与关键技术研究综述[J]. 自动化学报, 2022, 48(12): 2863-2885.
DING F, ZHANG N, LI S B, et al. A survey of architecture and key technologies of intelligent connected vehicle-road-cloud cooperation system[J]. Acta Automatica Sinica, 2022, 48(12): 2863-2885.
张毅, 裴华鑫, 姚丹亚. 车路协同环境下车辆群体协同决策研究综述[J]. 交通运输工程学报, 2022, 22(3): 1-18.
ZHANG Y, PEI H X, YAO D Y. Research review on cooperative decision-making for vehicle swarms in vehicle-infrastructure cooperative environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 1-18.
张新钰, 卢毅果, 高鑫, 等. 面向智能网联汽车的车路协同感知技术及发展趋势[J]. 自动化学报, 2025, 51(2): 233-248.
ZHANG X Y, LU Y G, GAO X, et al. Vehicle-road collaborative perception technology and development trend for intelligent connected vehicles[J]. Acta Automatica Sinica, 2025, 51(2): 233-248.
杜泉成, 王晓, 李灵犀, 等. 行人轨迹预测方法关键问题研究: 现状及展望[J]. 智能科学与技术学报, 2023, 5(2): 143-162.
DU Q C, WANG X, LI L X, et al. Key problems and progress of pedestrian trajectory prediction methods: the state of the art and prospects[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(2): 143-162.
刘腾, 王晓, 邢阳, 等. 基于数字四胞胎的平行驾驶系统及应用[J]. 智能科学与技术学报, 2019, 1(1): 40-51.
LIU T, WANG X, XING Y, et al. Research on digital quadruplets in cyber-physical-social space-based parallel driving[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1): 40-51.
黄哲, 王永才, 李德英. 3D目标检测方法研究综述[J]. 智能科学与技术学报, 2023, 5(1): 7-31.
HUANG Z, WANG Y C, LI D Y. A survey of 3D object detection algorithms[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31.
王雨倩, 丁嵘. 基于群体智能成果的路径规划程序自动生成系统[J]. 智能科学与技术学报, 2022, 4(2): 255-263.
WANG Y Q, DING R. Automatic path planning program generation system based on swarm intelligence results[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 255-263.
鲁思迪, 何元恺, 施巍松. 车计算: 自动驾驶时代的新型计算范式[J]. 计算机研究与发展, 2025, 62(1): 2-21.
LU S D, HE Y K, SHI W S. Vehicle computing: an emerging computing paradigm for the autonomous driving era[J]. Journal of Computer Research and Development, 2025, 62(1): 2-21.
CUI G Z, ZHANG W L, XIAO Y Q, et al. Cooperative perception technology of autonomous driving in the Internet of vehicles environment: a review[J]. Sensors, 2022, 22(15): 5535.
ZHANG X M, ZHANG A L, SUN J C, et al. EMP: edge-assisted multi-vehicle perception[C]//Proceedings of the 27th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2021: 545-558.
WANG T H, MANIVASAGAM S, LIANG M, et al. V 2 VNet: vehicle-to-vehicle communication for joint perception and prediction[M ] //Computer Vision-ECCV 2020. Cham: Springer, 2020: 605-621.
CHEN Q, TANG S H, YANG Q, et al. Cooper: cooperative perception for connected autonomous vehicles based on 3D point clouds[C]//Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems. Piscataway: IEEE Press, 2019: 514-524.
MARVASTI E E, RAFTARI A, MARVASTI A E, et al. Cooperative LIDAR object detection via feature sharing in deep networks[C ] //Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference. Piscataway: IEEE Press, 2020: 1-7.
LIU H S, REN P F, JAIN S, et al. FusionEye: perception sharing for connected vehicles and its bandwidth-accuracy trade-offs[C]//Proceedings of the 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking. Piscataway: IEEE Press, 2019: 1-9.
HURL B, COHEN R, CZARNECKI K, et al. TruPercept: trust modelling for autonomous vehicle cooperative perception from synthetic data[C]//Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2020: 341-347.
RAWASHDEH Z Y, WANG Z. Collaborative automated driving: a machine learning-based method to enhance the accuracy of shared information[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE Press, 2018: 3961-3966.
ZHANG Z J, WANG S, HONG Y C, et al. Distributed dynamic map fusion via federated learning for intelligent networked vehicles[C ] //Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2021: 953-959.
MILLER A, RIM K, CHOPRA P, et al. Cooperative perception and localization for cooperative driving[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2020: 1256-1262.
WU T E, TSAI C C, GUO J N. LiDAR/camera sensor fusion technology for pedestrian detection[C]//Proceedings of the 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE Press, 2017: 1675-1678.
ZHANG F H, CLARKE D, KNOLL A. Vehicle detection based on LiDAR and camera fusion[C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Piscataway: IEEE Press, 2014: 1620-1625.
AMBROSIN M, ALVAREZ I J, BUERKLE C, et al. Object-level perception sharing among connected vehicles[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE Press, 2019: 1566-1573.
ARNOLD E, DIANATI M, DE TEMPLE R, et al. Cooperative perception for 3D object detection in driving scenarios using infrastructure sensors[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1852-1864.
LI Y M, REN S L, WU P X, et al. Learning distilled collaboration graph for multi-agent perception[EB ] . arXiv preprint, 2021 : arXiv: 2111.00643 .
LIU Y C, TIAN J J, MA C Y, et al. Who2com: collaborative perception via learnable handshake communication[C ] //Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2020: 6876-6883.
LIU Y C, TIAN J J, GLASER N, et al. When2com: multi-agent perception via communication graph grouping[C ] //Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 4105-4114.
ZHOU Y, XIAO J H, ZHOU Y, et al. Multi-robot collaborative perception with graph neural networks[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2289-2296.
WANG Z, FAN S Q, HUO X L, et al. VIMI: vehicle-infrastructure multi-view intermediate fusion for camera-based 3D object detection[EB ] . arXiv preprint, 2023: arXiv: 2303.10975 .
XIONG J B, BI R W, TIAN Y L, et al. Toward lightweight, privacy-preserving cooperative object classification for connected autonomous vehicles[J]. IEEE Internet of Things Journal, 2022, 9(4): 2787-2801.
BI R W, XIONG J B, TIAN Y L, et al. Achieving lightweight and privacy-preserving object detection for connected autonomous vehicles[J]. IEEE Internet of Things Journal, 2023, 10(3): 2314-2329.
SRIDHAR S, ESKANDARIAN A. Cooperative perception in autonomous ground vehicles using a mobile-robot testbed[J]. IET Intelligent Transport Systems, 2019, 13(10): 1545-1556.
KIM S W, QIN B X, CHONG Z J, et al. Multivehicle cooperative driving using cooperative perception: design and experimental validation[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 663-680.
LIU W, MA Y, GAO M Q, et al. Cooperative visual augmentation algorithm of intelligent vehicle based on inter-vehicle image fusion[J]. Applied Sciences, 2021, 11(24): 11917.
MA H S, LI S F, ZHANG E Q, et al. Cooperative autonomous driving oriented MEC-aided 5G-V2X: prototype system design, field tests and AI-based optimization tools[J]. IEEE Access, 2020, 8: 54288-54302.
XIAO Z Y, MO Z B, JIANG K, et al. Multimedia fusion at semantic level in vehicle cooperactive perception[C]//Proceedings of the 2018 IEEE International Conference on Multimedia & Expo Workshops. Piscataway: IEEE Press, 2018: 1-6.
XU R S, TU Z Z, XIANG H, et al. CoBEVT: cooperative bird's eye view semantic segmentation with sparse transformers[EB ] . ar Xiv preprint, 2022: arXiv: 2207.02202 .
HU Y, LU Y F, XU R S, et al. Collaboration helps camera overtake LiDAR in 3D detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2023: 9243-9252.
THEIS L, SHI W Z, CUNNINGHAM A, et al. Lossy image compression with compressive autoencoders[EB ] . arXiv preprint, 2017: arXiv: 1703.00395 .
XU D, LU G, YANG R, et al. Learned image and video compression with deep neural networks[C]//Proceedings of the 2020 IEEE International Conference on Visual Communications and Image Processing. Piscataway: IEEE Press, 2020: 1-3.
ROKACH L, MAIMON O, SHMUELI E. Machine Learning for Data Science Handbook[M]. Cham: Springer, 2023.
LÖHDEFINK J, BÄR A, SCHMIDT N M, et al. Focussing learned image compression to semantic classes for V2X applications[C]//Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2020: 1641-1648.
LYU P, LI K, XU J, et al. Cooperative sensing information transmission load optimization for automated vehicles[J]. Chinese Journal of Computers, 2021, 44(10): 1984-1997.
GLASER N, LIU Y C, TIAN J J, et al. Overcoming obstructions via bandwidth-limited multi-agent spatial handshaking[C ] //Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2021: 2406-2413.
YE E, SPIEGEL P, ALTHOFF M. Cooperative raw sensor data fusion for ground truth generation in autonomous driving[C]//Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems. Piscataway: IEEE Press, 2020: 1-7.
CHEN H L, LIU B, ZHANG X M, et al. A cooperative perception environment for traffic operations and control[EB ] . arXiv preprint, 2022: arXiv: 2208.02792 .
LUO G Y, SHAO C Z, CHENG N, et al. EdgeCooper: network-aware cooperative LiDAR perception for enhanced vehicular awareness[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(1): 207-222.
XU R S, XIANG H, TU Z Z, et al. V2X-ViT: vehicle-to-everything cooperative perception withVision transformer[C]//Computer Vision-ECCV 2022. Cham: Springer, 2022: 107-124.
CHEN Q, MA X, TANG S H, et al. F-cooper: feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds[C]//Proceedings of the 4th ACM/IEEE Symposium on Edge Computing. New York: ACM, 2019: 88-100.
ZHU X G, ZHOU H, WANG T, et al. Cylindrical and asymmetrical 3D convolution networks for LiDAR-based perception[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6807-6822.
YUAN Y S, CHENG H, SESTER M. Keypoints-based deep feature fusion for cooperative vehicle detection of autonomous driving[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3054-3061.
CUI J X, QIU H, CHEN D, et al. Coopernaut: end-to-end driving with cooperative perception for networked vehicles[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 17231-17241.
QIAO D H, ZULKERNINE F. Adaptive feature fusion for cooperative perception using LiDAR point clouds[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2023: 1186-1195.
LU Y F, LI Q H, LIU B A, et al. Robust collaborative 3D object detection in presence of pose errors[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2023: 4812-4818.
LI Y, ZHANG J, MA D, et al. Multi-robot scene completion: Towards task-agnostic collaborative perception[C]//Proceedings of the Conference on Robot Learning. [S.l.:s.n.], 2023: 2062-2072.
LI J L, XU R S, LIU X Y, et al. Learning for vehicle-to-vehicle cooperative perception under lossy communication[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(4): 2650-2660.
ZHANG J Y, YANG K, WANG Y L, et al. ERMVP: communication-efficient and collaboration-robust multi-vehicle perception in challenging environments[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2024: 12575-12584.
HE C, WANG H, CHEN L, et al. V2x-ahd: vehicle-to-everything cooperation perception via asymmetric heterogenous distillation network[Z]. 2023.
MA Y S, LU J W, CUI C, et al. MACP: efficient model adaptation for cooperative perception[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2024: 3361-3370.
YANG D K, YANG K, WANG Y Z, et al. How2comm: communication-efficient and collaboration-pragmatic multi-agent perception[J]. Advances in Neural Information Processing Systems, 2024, 36: 25151-25164.
HONG S X, LIU Y, LI Z, et al. Multi-agent collaborative perception via motion-aware robust communication network[C ] //Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2024: 15301-15310.
CHEN H M, WANG H F, LIU Z L, et al. HP3D-V 2 V: high-precision 3D object detection vehicle-to-vehicle cooperative perception algorithm[J ] . Sensors, 2024, 24(7): 2170.
LI B L, LI J L, LIU X Y, et al. V2X-DGW: domain generalization for multi-agent perception under adverse weather conditions[EB ] . arXiv preprint, 2024: arXiv: 2403.11371 .
DAO M Q, BERRIO J S, FRÉMONT V, et al. Practical collaborative perception: a framework for asynchronous and multi-agent 3D object detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(9): 12163-12175.
BARBIERI L, TEDESCHINI B C, BRAMBILLA M, et al. Deep learning-based cooperative LiDAR sensing for improved vehicle positioning[J]. IEEE Transactions on Signal Processing, 2024, 72: 1666-1682.
SARLAK A, ALZORGAN H, BOROUJENI S P H, et al. Enhanced cooperative perception for autonomous vehicles using imperfect communication[C]//Proceedings of the 2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things. Piscataway: IEEE Press, 2024: 700-707.
BIJELIC M, GRUBER T, MANNAN F, et al. Seeing through fog without seeing fog: deep multimodal sensor fusion in unseen adverse weather[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 11679-11689.
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2012: 3354-3361.
YOO J H, KIM Y, KIM J, et al. 3D-CVF: generating joint camera and LiDAR features using cross-view spatial feature fusion for 3D object detection[C]//Computer Vision-ECCV 2020. Cham: Springer, 2020: 720-736.
XIE L, XU G D, CAI D, et al. X-view: non-egocentric multi-view 3D object detector[J]. IEEE Transactions on Image Processing, 2023, 32: 1488-1497.
XIANG H, XU R S, MA J Q. HM-ViT: hetero-modal vehicle-to-vehicle cooperative perception with vision transformer[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2023: 284-295.
VORA S, LANG A H, HELOU B, et al. PointPainting: sequential fusion for 3D object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 4603-4611.
XIE L, XIANG C, YU Z X, et al. PI-RCNN: an efficient multi-sensor 3D object detector with point-based attentive cont-conv fusion module[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12460-12467.
JIANG Q Y, ZHANG L J, MENG D J. Target detection algorithm based on MMW radar and camera fusion[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE Press, 2019: 1-6.
JI Z P, PROKHOROV D. Radar-vision fusion for object classification[C]//Proceedings of the 2008 11th International Conference on Information Fusion. Piscataway: IEEE Press, 2008: 1-7.
JHA H, LODHI V, CHAKRAVARTY D. Object detection and identification using vision and radar data fusion system for ground-based navigation[C]//Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks. Piscataway: IEEE Press, 2019: 590-593.
LEKIC V, BABIC Z. Automotive radar and camera fusion using Generative Adversarial Networks[J]. Computer Vision and Image Understanding, 2019, 184: 1-8.
WANG X, XU L H, SUN H B, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2075-2084.
SAITO M, SHEN S C, ITO T. Interpolation method for sparse point cloud at long distance using sensor fusion with LiDAR and camera[C]//Proceedings of the 2021 IEEE CPMT Symposium Japan. Piscataway: IEEE Press, 2021: 116-117.
ZHANG H, LUO G Y, CAO Y, et al. Multi-modal virtual-real fusion based transformer for collaborative perception[C]//Proceedings of the 2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming. Piscataway: IEEE Press, 2022: 1-6.
ZHAO B Y, ZHANG W, ZOU Z N. BM2CP: efficient collaborative perception with LiDAR-camera modalities[EB ] . arXiv preprint, 2023: arXiv: 2310.14702 .
DUAN X T, JIANG H, TIAN D X, et al. V2I based environment perception for autonomous vehicles at intersections[J]. China Communications, 2021, 18(7): 1-12.
FAN J Q, HUO T J, LI X. A review of one-stage detection algorithms in autonomous driving[C]//Proceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence. Piscataway: IEEE Press, 2020: 210-214.
ŞAHIN M Ş, ACARMAN T. An object segmentation approach for mobile lidar point clouds[C]//Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems. Piscataway: IEEE Press, 2021: 554-560.
FU Y J, TIAN D X, DUAN X T, et al. A camera-radar fusion method based on edge computing[C]//Proceedings of the 2020 IEEE International Conference on Edge Computing. Piscataway: IEEE Press, 2020: 9-14.
WANG L F, ZHANG Z Y, DI X, et al. A roadside camera-radar sensing fusion system for intelligent transportation[C]//Proceedings of the 2020 17th European Radar Conference. Piscataway: IEEE Press, 2021: 282-285.
YIN H B, TIAN D X, LIN C M, et al. V 2 VFormer: multi-modal vehicle-to-vehicle cooperative perception via global-local transformer[J ] . IEEE Transactions on Intelligent Transportation Systems, 2024, 25(2): 2153-2166.
王秉路, 靳杨, 张磊, 等. 基于多传感器融合的协同感知方法[J]. 雷达学报, 2024, 13(1): 87-96.
WANG B L, JIN Y, ZHANG L, et al. Collaborative perception method based on multisensor fusion[J]. Journal of Radars, 2024, 13(1): 87-96.
LOPEZ P A, BEHRISCH M, BIEKER-WALZ L, et al. Microscopic traffic simulation using SUMO[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE Press, 2018: 2575-2582.
DOSOVITSKIY A, ROS G, CODEVILLA F, et al. Carla: an open urban driving simulator[C]//Proceedings of the Conference on Robot Learning. [S.l.:s.n.], 2017: 1-16.
XU R S, GUO Y, HAN X, et al. OpenCDA: an open cooperative driving automation framework integrated with co-simulation[C]//Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference. Piscataway: IEEE Press, 2021: 1155-1162.
XU R S, XIANG H, HAN X, et al. The OpenCDA open-source ecosystem for cooperative driving automation research[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(4): 2698-2711.
XIANG H, XU R S, XIA X, et al. V2XP-ASG: generating adversarial scenes for vehicle-to-everything perception[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2023: 3584-3591.
BAI Z W, WU G Y, QI X W, et al. Cyber mobility mirror for enabling cooperative driving automation in mixed traffic: a co-simulation platform[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(2): 251-265.
ZHENG Z L, HAN X, XIA X, et al. OpenCDA-ROS: enabling seamless integration of simulation and real-world cooperative driving automation[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(7): 3775-3780.
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 11618-11628.
SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: waymo open dataset[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 2443-2451.
XU R S, XIANG H, XIA X, et al. OPV 2 V: an open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication[C ] //Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE Press, 2022: 2583-2589.
LI Y M, MA D K, AN Z Y, et al. V2X-sim: multi-agent collaborative perception dataset and benchmark for autonomous driving[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 10914-10921.
YU H B, LUO Y Z, SHU M, et al. DAIR-V2X: a large-scale dataset for vehicle-infrastructure cooperative 3D object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 21329-21338.
ARNOLD E, MOZAFFARI S, DIANATI M. Fast and robust registration of partially overlapping point clouds[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 1502-1509.
YU H B, YANG W X, RUAN H Z, et al. V2X-seq: a large-scale sequential dataset for vehicle-infrastructure cooperative perception and forecasting[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2023: 5486-5495.
XU R S, XIA X, LI J L, et al. V 2 V 4 Real: a real-world large-scale dataset for vehicle-to-vehicle cooperative perception[C ] //Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2023: 13712-13722.
AXMANN J, MOFTIZADEH R, SU J Y, et al. LUCOOP: Leibniz University cooperative perception and urban navigation dataset[C]//Proceedings of the 2023 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2023: 1-8.
MA C, QIAO L, ZHU C K, et al. HoloVic: large-scale dataset and benchmark for multi-sensor holographic intersection and vehicle-infrastructure cooperative[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2024: 22129-22138.
ZIMMER W, WARDANA G A, SRITHARAN S, et al. TUMTraf V2X cooperative perception dataset[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2024: 22668-22677.
HAO R Y, FAN S Q, DAI Y R, et al. RCooper: a real-world large-scale dataset for roadside cooperative perception[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2024: 22347-22357.
LUO G Y, ZHANG H, YUAN Q, et al. Complementarity-enhanced and redundancy-minimized collaboration network for multi-agent perception[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 3578-3586.
LUO G Y, YUAN Q, LI J L, et al. Artificial intelligence powered mobile networks: from cognition to decision[J]. IEEE Network, 2022, 36(3): 136-144.
ZHANG H, TIAN Y L, WANG K F, et al. Mask SSD: an effective single-stage approach to object instance segmentation[J]. IEEE Transactions on Image Processing, 2019, 29: 2078-2093.
HU Y, FANG S H, LEI Z X, et al. Where2comm: communication-efficient collaborative perception via spatial confidence maps[J]. Advances in Neural Information Processing Systems, 2022, 35: 4874-4886.
WANG B L, ZHANG L, WANG Z Z, et al. Core: cooperative reconstruction for multi-agent perception[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2023: 8676-8686.
YANG K, YANG D K, ZHANG J Y, et al. What2comm: towards communication-efficient collaborative perception via feature decoupling[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 7686-7695.
KHAN N, COLERI S. Event-triggered reinforcement learning based joint resource allocation for ultra-reliable low-latency V2X communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 16991-17006.
LU J W, HAN L Y, WEI Q L, et al. Event-triggered deep reinforcement learning using parallel control: a case study in autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(4): 2821-2831.
VADIVELU N, REN M Y, TU J, et al. Learning to communicate and correct pose errors[C]//Proceedings of the Conference on Robot Learning. [S.l.:s.n.], 2021: 1195-1210.
GU J M, ZHANG J Y, ZHANG M Y, et al. FeaCo: reaching robust feature-level consensus in noisy pose conditions[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 3628-3636.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构