浏览全部资源
扫码关注微信
1.上海海洋大学信息学院,上海 201306
2.上海海洋大学工程学院,上海 201306
[ "韩彦岭(1975- ),女,博士,上海海洋大学信息学院教授,主要研究方向为路径规划算法、基于深度学习的图像分类与识别。" ]
[ "吕金科(1999- ),男,上海海洋大学信息学院硕士生,主要研究方向为路径规划算法、智能优化。" ]
[ "周国峰(1985- ),男,博士,上海海洋大学工程学院讲师,主要研究方向为车辆动力学、建模、仿真和控制。" ]
[ "张力珂(2001- ),男,上海海洋大学信息学院硕士生,主要研究方向为路径规划算法。" ]
[ "张云(1974- ),男,博士,上海海洋大学信息学院教授,主要研究方向为导航系统的高精度定位原理、导航系统反射信号的海洋遥感技术。" ]
收稿日期:2024-11-28,
修回日期:2025-03-04,
纸质出版日期:2025-06-15
移动端阅览
韩彦岭,吕金科,周国峰等.基于灰狼优化的自适应混合A*和人工势场的无人矿卡路径规划研究[J].智能科学与技术学报,2025,07(02):246-256.
HAN Yanling,LYU Jinke,ZHOU Guofeng,et al.Research on unmanned mining truck path planning based on grey wolf optimization adaptive hybrid A* and artificial potential field[J].Chinese Journal of Intelligent Science and Technology,2025,07(02):246-256.
韩彦岭,吕金科,周国峰等.基于灰狼优化的自适应混合A*和人工势场的无人矿卡路径规划研究[J].智能科学与技术学报,2025,07(02):246-256. DOI: 10.11959/j.issn.2096-6652.202513.
HAN Yanling,LYU Jinke,ZHOU Guofeng,et al.Research on unmanned mining truck path planning based on grey wolf optimization adaptive hybrid A* and artificial potential field[J].Chinese Journal of Intelligent Science and Technology,2025,07(02):246-256. DOI: 10.11959/j.issn.2096-6652.202513.
为了提升无人驾驶技术在露天矿区应用中的路径规划能力,提出了一种基于灰狼优化的自适应混合A*和人工势场(grey wolf optimization-based adaptive hybrid A* and artificial potential field,GWO-HAPF)方法。通过灰狼优化算法对混合A*的关键参数进行自适应调整,实现路径长度、平滑度和规划时间的多目标平衡,从而克服混合A*(hybrid A*,HA*)算法固定参数适应性不足的问题,大幅提升了全局路径规划的质量与适应性。在局部路径规划中,采用改进的人工势场法,优化斥力函数并增加逃出力,有效提升了实时避障的可行性和路径的平滑性。实验结果表明,相较于HA*算法和改进HA*(improved hybrid A*,IHA*)算法,GWO-HAPF方法在全局规划中的计算效率分别平均提升了约80%和14.9%,路径长度平均减少9.8%,平滑度平均提升超过53%;在局部路径规划中,其规划时间相较于IHA*算法提升了95.8%,平滑度为IHA*算法的10.19%,能够高效完成避障任务。研究结果表明,该方法在规划效率、路径长度、平滑性和实时避障方面表现出优势,体现了其在露天矿区无人矿卡路径规划中的实际应用价值。
To enhance the path planning capabilities of unmanned mining trucks in open-pit mining scenarios
a grey wolf optimization-based adaptive hybrid A* and artificial potential field (GWO-HAPF)method was proposed. The proposed method emploied the grey wolf optimization algorithm to adaptively adjust the key parameters of the hybrid A*(HA*) algorithm
achieving a multi-objective balance among path length
smoothness
and planning time. This effectively overcame the HA* algorithm's limited adaptability to fixed parameter settings
significantly improving the quality and adaptability of global path planning. For local path planning
an improved artificial potential field method was adopted
optimizing the repulsive force function and incorporating an escape force mechanism
which effectively enhanced real-time obstacle avoidance feasibility and path smoothness. Experimental results demonstrate that
compared to the standard HA* algorithms and the improved hybrid A* (IHA*) algorithms
GWO-HAPF improves computational efficiency in global planning by an average of 80% and 14.9%
respectively
reduces path length by over 9.8%
and increases smoothness by over 53%. In local path planning
GWO-HAPF achieves a planning time that is 95.8% shorter than IHA*
while its smoothness improves to 10.19% of IHA*. These findings indicate that the proposed method exhibits outstanding advantages in planning efficiency
path length
smoothness
and real-time obstacle avoidance
showcasing its practical application value in path planning for unmanned mining trucks in open-pit mining scenarios.
阮顺领, 赵微, 辛智, 等. 改进时间弹性带的露天矿无人卡车避障路径规划研究[J]. 智能系统学报, 2024, 19(6): 1449-1457.
RUAN S L, ZHAO W, XIN Z, et al. Research on the obstacle avoidance path planning of unmanned truck in open-pit mine with improved time-elastic-bands[J]. CAAI Transactions on Intelligent Systems, 2024, 19(6): 1449-1457.
丁志杰, 王亚飞, 章翼辰, 等. 基于复合动态采样的自动驾驶矿车节能路径规划方法[J]. 汽车工程, 2024, 46(4): 588-595, 642.
DING Z J, WANG Y F, ZHANG Y C, et al. Energy-saving planning method for autonomous driving mining trucks based on composite dynamic sampling[J]. Automotive Engineering, 2024, 46(4): 588-595, 642.
BELLAMY D, PRAVICA L. Assessing the impact of driverless haul trucks in Australian surface mining[J]. Resources Policy, 2011, 36(2): 149-158.
LIMA P F, NILSSON M, TRINCAVELLI M, et al. Spatial model predictive control for smooth and accurate steering of an autonomous truck[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(4): 238-250.
LI H, LI Y M, CHEN P, et al. A secure trajectory planning method for connected autonomous vehicles at mining site[J]. Symmetry, 2023, 15(11): 1973.
YI B L, BENDER P, BONARENS F, et al. Model predictive trajectory planning for automated driving[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(1): 24-38.
唐炜, 谭啸, 孙宇, 等. 基于A*与动态窗口法的物料传输平台路径规划研究[J]. 智能科学与技术学报, 2023, 5(4): 515-524.
TANG W, TAN X, SUN Y, et al. Research on path planning of material transmission platform based on A* and dynamic window method[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(4): 515-524.
DOLGOV D, THRUN S, MONTEMERLO M, et al. Path planning for autonomous vehicles in unknown semi-structured environments[J]. The International Journal of Robotics Research, 2010, 29(5): 485-501.
邓穆坤, 刘勇, 黄佳德, 等. 基于混合A * 算法的无人驾驶矿用卡车路径优化研究[J ] . 控制与信息技术, 2022(5): 60-67.
DENG M K, LIU Y, HUANG J D, et al. Research on hybrid A*Based path optimization of unmanned mine truck[J]. Control and Information Technology, 2022(5): 60-67.
TU K B, YANG S S, ZHANG H, et al. Hybrid A based motion planning for autonomous vehicles in unstructured environment[C]//Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway: IEEE Press, 2019: 1-4.
陈鑫鹏, 徐彪, 胡满江, 等. 一种基于等步长分层拓展的混合A * 路径规划方法[J ] . 控制与信息技术, 2021(1): 17-22, 29.
CHEN X P, XU B, HU M J, et al. A hybrid-A* path planning method based on equal step hierarchical expansion[J]. Control and Information Technology, 2021(1): 17-22, 29.
韩伟.室外环境基于多传感器履带式机器人自主导航[D]. 大连: 大连理工大学, 2017.
HAN W. Autonomous navigation of multi-sensor based crawler robot in outdoor environment[D]. Dalian: Dalian University of Technology, 2017.
ZHAI L, LIU C, ZHANG X Y, et al. Local trajectory planning for obstacle avoidance of unmanned tracked vehicles based on artificial potential field method[J]. IEEE Access, 2024, 12: 19665-19681.
ABDALLA T Y, ABED A A, AHMED A A. Mobile robot navigation using PSO-optimized fuzzy artificial potential field with fuzzy control[J]. Journal of Intelligent & Fuzzy Systems, 2016, 32(6): 3893-3908.
LI W H. An improved artificial potential field method based on chaos theory for UAV route planning[C]//Proceedings of the 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Piscataway: IEEE Press, 2019: 47-51.
唐龙. 露天矿矿山采场道路的修筑和养护[J]. 中国设备工程, 2020(23): 217-219.
TANG L. Construction and maintenance of stope roads in open pit mines[J]. China Plant Engineering, 2020(23): 217-219.
WANG X W, LI H R, HU M J, et al. HD map construction and update system for autonomous driving in open-pit mines[J]. IEEE Systems Journal, 2023, 17(4): 6202-6213.
BO L, ZHANG Z H, LIU Y, et al. Research on path planning method of solid backfilling and pushing mechanism based on adaptive genetic particle swarm optimization[J]. Mathematics, 2024, 12(3): 479.
ZHANG D, YIN Y B, LUO R, et al. Hybrid IACO-A*-PSO optimization algorithm for solving multiobjective path planning problem of mobile robot in radioactive environment[J]. Progress in Nuclear Energy, 2023, 159: 104651.
MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98.
王之中, 田野, 孙剑, 等. 自动驾驶测试公共服务平台建设与思考[J]. 交通运输工程学报, 2023, 23(6): 1-9.
WANG Z Z, TIAN Y, SUN J, et al.Construction and rethinking on public service platform for autonomous driving test[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 1-9.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构