
浏览全部资源
扫码关注微信
1.中国安全生产科学研究院北京市地铁火灾与客流疏运安全重点实验室,北京 100012
2.中国矿业大学(北京)机械与电气工程学院,北京 100083
3.中国安全生产科学研究院城市火灾监测预警应急管理部重点实验室,北京 100012
[ "王天柱(1993- ),男,博士,中国安全生产科学研究院北京市地铁火灾与客流疏运安全重点实验室工程师,主要研究方向为智能机器人系统、应急救援装备研发。" ]
[ "刘佳音(1997- ),女,中国矿业大学(北京)机械与电气工程学院博士生,主要研究方向为矿山数据智能、知识自动化。" ]
[ "韩松(1991- ),男,博士,中国安全生产科学研究院北京市地铁火灾与客流疏运安全重点实验室工程师,主要研究方向为机器人技术和人工智能。" ]
[ "车洪磊(1983- ),男,博士,中国安全生产科学研究院城市火灾监测预警应急管理部重点实验室正高级工程师,主要研究方向为安全科学与工程、应急机器人技术。" ]
[ "史聪灵(1979- ),男,博士,中国安全生产科学研究院城市火灾监测预警应急管理部重点实验室正高级工程师,主要研究方向为地铁与地下空间工程安全,交通安全与消防安全理论、技术、装备和材料研发。" ]
收稿日期:2024-10-14,
修回日期:2024-12-27,
纸质出版日期:2025-03-15
移动端阅览
王天柱,刘佳音,韩松等.面向能效优化的攻角反馈机器人智能控制方法[J].智能科学与技术学报,2025,07(01):128-138.
WANG Tianzhu,LIU Jiayin,HAN Song,et al.Intelligent control method of robot based on angle of attack feedback for energy efficiency optimization[J].Chinese Journal of Intelligent Science and Technology,2025,07(01):128-138.
王天柱,刘佳音,韩松等.面向能效优化的攻角反馈机器人智能控制方法[J].智能科学与技术学报,2025,07(01):128-138. DOI: 10.11959/j.issn.2096-6652.202511.
WANG Tianzhu,LIU Jiayin,HAN Song,et al.Intelligent control method of robot based on angle of attack feedback for energy efficiency optimization[J].Chinese Journal of Intelligent Science and Technology,2025,07(01):128-138. DOI: 10.11959/j.issn.2096-6652.202511.
水生生物能够感知水流状态并及时调节攻角,从而在周期性拍动过程中保持最高的运动效率。生物尾鳍的运动伴随着尾部刚度的变化,同时依赖于尾部肌肉的收缩/松弛。在与外部流体的相互作用中,攻角调节有助于生物在运动中保持最佳攻角,以提高推进性能。基于此,提出了一种基于攻角反馈的仿生机器人高速运动智能控制方法。首先,分析所设计的机器海豚的运动学特性,明确算法的硬件基础;其次,针对尾鳍电机在高频运动时无法与腰关节电机有效协同的问题,提出基于模糊推理的关节角控制算法,实现了尾鳍关节在力矩模式下对期望关节角的跟踪;然后,提出了一种基于攻角反馈的尾关节闭环控制方案以提高运动性能;最后,通过实验验证了所提出的运动控制方法的有效性。
Aquatic organisms can sense the flow state and adjust the attack angle in time
thereby maintaining the highest movement efficiency during the periodic flapping process. The biological caudal fin
accompanied by changes in tail stiffness
depends on the contraction/relaxation of tail muscles. In the interaction with external fluid
attack angle adjustment helps organisms maintain the optimal attack angle during the movement to improve propulsion performance. Inspired by this
an intelligent control method for high-speed movement of bionic robots based on attack angle feedback was proposed. Firstly
the kinematic characteristics of the designed robotic dolphin was analyzed to clarify the hardware basis of the algorithm. Secondly
in view of the problem that the caudal fin motor cannot effectively cooperate with the lumbar joint motor during high-frequency movement
a joint angle control algorithm based on fuzzy reasoning was proposed to realize the tracking of the expected joint angle by the caudal fin joint in the torque mode. In addition
a closed-loop control scheme for the caudal joint based on attack angle feedback was proposed to improve movement performance. Finally
the experiments verify the effectiveness of the proposed motion control scheme.
LIAO X C, ZHOU C, CHENG L, et al. A fast online elastic-spine-based stiffness adjusting mechanism for fishlike swimming[J]. Soft Robotics, 2024, 11(6): 935-945.
CHEN B X, ZHANG J, MENG Q X, et al. A dynamic model of tensegrity robotic fish considering soft fish skin and tail[J]. Nonlinear Dynamics, 2025, 113(1): 329-353.
LU B, WANG J, ZOU Q Q, et al. Towards power cost analysis and optimization of a multi-flexible robotic fish[J]. Ocean Engineering, 2024, 294: 116746.
许一航, 刘剑, 孙长银. 基于四元数的全驱动碟形AUV单矢量反馈控制[J]. 智能科学与技术学报, 2022, 4(4): 513-521.
XU Y H, LIU J, SUN C Y. Quaternion-based single-vector feedback control for fully-actuated dish-shaped AUV[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 513-521.
苏震, 刘殿勇, 孙达智, 等. 基于路径参数一致的水下机器人编队与避障控制[J]. 智能科学与技术学报, 2022, 4(4): 533-541.
SU Z, LIU D Y, SUN D Z, et al. Path parameter consensus-based formation and obstacle avoidance control of autonomous underwater vehicles[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 533-541.
FISH F, ROHR J. Review of dolphin hydrodynamics and swimming performance[R]. 1999.
KOPMAN V, PORFIRI M. Design, modeling, and characterization of a miniature robotic fish for research and education in biomimetics and bioinspiration[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 471-483.
FISH F E, LAUDER G V. Control surfaces of aquatic vertebrates: active and passive design and function[J]. Journal of Experimental Biology, 2017, 220(23): 4351-4363.
FISH F E, LEGAC P, WILLIAMS T M, et al. Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV[J]. Journal of Experimental Biology, 2014, 217(2): 252-260.
LIU G, REN Y, DONG H B, et al. Computational analysis of vortex dynamics and performance enhancement due to body-fin and fin-fin interactions in fish-like locomotion[J]. Journal of Fluid Mechanics, 2017, 829: 65-88.
AKANYETI O, PUTNEY J, YANAGITSURU Y R, et al. Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52): 13828-13833.
LI C, YANG W J, XU X H, et al. Numerical investigation of fish exploiting vortices based on the Kármán gaiting model[J]. Ocean Engineering, 2017, 140: 7-18.
FLAMMANG B E, LAUDER G V. Speed-dependent intrinsic caudal fin muscle recruitment during steady swimming in bluegill sunfish, Lepomis macrochirus[J]. The Journal of Experimental Biology, 2008, 211(4): 587-598.
LONG J H. Muscles, elastic energy, and the dynamics of body stiffness in swimming eels[J]. American Zoologist, 1998, 38(4): 771-792.
CHEN D, WU Z X, MENG Y, et al. Development of a high-speed swimming robot with the capability of fish-like leaping[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3579-3589.
TONG R, WU Z X, CHEN D, et al. Design and optimization of an untethered high-performance robotic tuna[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 4132-4142.
ZIEGLER M, HOFFMANN M, CARBAJAL J P, et al. Varying body stiffness for aquatic locomotion[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 2705-2712.
NAKABAYASHI M, KOBAYASHI R, KOBAYASHI S, et al. Bioinspired propulsion mechanism using a fin with a dynamic variable-effective-length spring-evaluation of thrust characteristics and flow around a fin in a uniform flow[J]. Journal of Biomechanical Science and Engineering, 2009, 4(1): 82-93.
PARK Y J, HUH T M, PARK D, et al. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot[J]. Bioinspiration & Biomimetics, 2014, 9(3): 036002.
ZHONG Q, ZHU J, FISH F E, et al. Tunable stiffness enables fast and efficient swimming in fish-like robots[J]. Science Robotics, 2021, 6(57): eabe4088.
CLAPHAM R J, HU H S. iSplash-MICRO: a 50 mm robotic fish generating the maximum velocity of real fish[C]//Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 287-293.
ANDERSON J M, STREITLIEN K, BARRETT D S, et al. Oscillating foils of high propulsive efficiency[J]. Journal of Fluid Mechanics, 1998, 360(1): 41-72.
0
浏览量
22
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621