浏览全部资源
扫码关注微信
1.清华大学精密仪器系,北京 100084
2.时空信息精密感知技术全国重点实验室,北京 100084
3.中航工业成都飞机设计研究所,四川 成都 610091
[ "廖文安(2000- ),男,清华大学精密仪器系博士生,主要研究方向为飞行控制、参数辨识。" ]
[ "张骁骏(1995- ),男,中航工业成都飞机设计研究所工程师,主要研究方向为飞行器设计及飞行控制技术。" ]
[ "邓金来(1995- ),男,清华大学精密仪器系博士生,主要研究方向为飞行器动力学建模及飞行控制技术。" ]
[ "杨赟杰(1994- ),男,博士,清华大学精密仪器系助理研究员,主要研究方向为先进飞行器等无人系统动力学及智能控制技术研究。" ]
收稿日期:2024-09-02,
修回日期:2024-11-05,
纸质出版日期:2025-03-15
移动端阅览
廖文安,张骁骏,邓金来等.基于两级控制分配的倾转旋翼无人机飞行控制[J].智能科学与技术学报,2025,07(01):114-127.
LIAO Wenan,ZHANG Xiaojun,DENG Jinlai,et al.Flight control of tilt-rotor unmanned aerial vehicle based on two-level control allocation[J].Chinese Journal of Intelligent Science and Technology,2025,07(01):114-127.
廖文安,张骁骏,邓金来等.基于两级控制分配的倾转旋翼无人机飞行控制[J].智能科学与技术学报,2025,07(01):114-127. DOI: 10.11959/j.issn.2096-6652.202510.
LIAO Wenan,ZHANG Xiaojun,DENG Jinlai,et al.Flight control of tilt-rotor unmanned aerial vehicle based on two-level control allocation[J].Chinese Journal of Intelligent Science and Technology,2025,07(01):114-127. DOI: 10.11959/j.issn.2096-6652.202510.
作为一种特种机器人,倾转旋翼无人机展现出了其在复杂环境中执行任务的巨大潜力。为提高其自主性和对复杂环境的适应性,对鲁棒的飞行控制律和控制分配算法进行了研究。针对倾转旋翼无人机不同飞行模式中控制策略和舵面操纵效能变化大的特点,提出了基于两级控制分配的级联式飞行控制框架。针对不同的控制模式设计顶层控制器,基于加权广义逆方法的力控制分配模块生成姿态角指令,设计力矩控制分配模块生成实际操纵量。姿态控制器采用双闭环控制结构,结合扰动观测器提高对外部扰动的鲁棒性。最后,通过全流程仿真和干扰条件下过渡仿真验证了飞行控制框架和控制器的有效性和鲁棒性。
As a special type of robot
tilt-rotor unmanned aerial vehicles have demonstrated great potential in performing tasks in complex environments. To improve its autonomy and adaptability to complex environments
robust flight control law and control allocation method was studied. A cascaded flight control framework based on two-level control allocation was proposed for the significant changes in control strategy and control effectiveness of tilt-rotor unmanned aerial vehicle in different flight modes. A top-level controller was developed for various control modes
and the actual control quantity was generated by a torque control allocation module in conjunction with attitude angle commands using a force control allocation module based on the weighted generalized inverse method. The attitude controller was designed based on a dual closed-loop control structure
and a disturbance observer was added to improve the robustness to external disturbances. Finally
the effectiveness and robustness of the flight control framework and controller were verified by full process simulation and transition simulation under interference conditions.
HASSANALIAN M, ABDELKEFI A. Classifications, applications, and design challenges of drones: a review[J]. Progress in Aerospace Sciences, 2017, 91: 99-131.
董超, 沈赟, 屈毓锛. 基于无人机的边缘智能计算研究综述[J]. 智能科学与技术学报, 2020, 2(3): 227-239.
DONG C, SHEN Y, QU Y B. A survey of UAV-based edge intelligent computing[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 227-239.
郭大力, 赵中原, 罗子娟. 基于极值搜索的四旋翼无人机姿态跟踪控制[J]. 智能科学与技术学报, 2023, 5(4): 486-493.
GUO D L, ZHAO Z Y, LUO Z J. Attitude tracking control for quadrotor UAVs based on extremum seeking[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(4): 486-493.
FOSTER M. Evolution of tiltrotor aircraft[C]//Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA Press, 2003: 2652.
ZHU J H, YANG Y J, WANG X Y, et al. Attitude control of a novel tilt-wing UAV in hovering flight[J]. Science China Information Sciences, 2023, 66(5): 154201.
LIU Z, HE Y Q, YANG L Y, et al. Control techniques of tilt rotor unmanned aerial vehicle systems: a review[J]. Chinese Journal of Aeronautics, 2017, 30(1): 135-148.
WANG X H, CAI L L. Mathematical modeling and control of a tilt-rotor aircraft[J]. Aerospace Science and Technology, 2015, 47: 473-492.
严旭飞, 陈仁良. 倾转旋翼机动态倾转过渡过程的操纵策略优化[J]. 航空学报, 2017, 38(7): 520865.
YAN X F, CHEN R L. Control strategy optimization of dynamic conversion procedure of tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520865.
HERNÁNDEZ-GARCÍA R G, RODRÍGUEZ-CORTÉS H. Transition flight control of a cyclic tiltrotor UAV based on the Gain-Scheduling strategy[C]//Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2015: 951-956.
SCHÜTT M, ISLAM T, HARTMANN P, et al. Scalable design approach to analyze flight mechanical performance for tiltwing UAVs[C]//Proceedings of the 31st Congress of the International Council of Aeronautical Sciences. Belo Horizonte, Brazil: International Council of the Aeronautical Sciences, 2018: 09-09.
许长春. 倾转旋翼无人机飞行控制研究[D]. 北京: 北京理工大学, 2015.
XU C C. Research on flight control of tilting rotor UAV[D]. Beijing: Beijing Institute of Technology, 2015.
APKARIAN J. Attitude control of pitch-decoupled VTOL fixed wing tiltrotor[C]//Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2018: 195-201.
KIM J, CHOI D. Design and control of a novel tiltrotor platform[C]//Proceedings of the AIAA Infotech and Aerospace. Reston: AIAA Press, 2016: 1254.
PAPACHRISTOS C, ALEXIS K, TZES A. Model predictive hovering-translation control of an unmanned Tri-TiltRotor[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 5425-5432.
YAYLA M, KUTAY A T, SENIPEK M, et al. An adaptive flight controller design for a tilt-prop fixed wing UAV for all flight modes[C]//Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA Press, 2020: 0593.
WEN J Y, SONG Y G, WANG H J, et al. Hybrid adaptive control for tiltrotor aircraft flight control law reconfiguration[J]. Aerospace, 2023, 10(12): 1001.
ROTHHAAR P M, MURPHY P C, BACON B J, et al. NASA langley distributed propulsion VTOL TiltWing aircraft testing, modeling, simulation, control, and flight test development[C]//Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA Press, 2014: 2999.
ZHAO W, UNDERWOOD C. Robust transition control of a Martian coaxial tiltrotor aerobot[J]. Acta Astronautica, 2014, 99: 111-129.
杨洁, 陈谋, 熊师洵, 等. 倾转旋翼机平均驻留时间切换鲁棒H ∞ 跟踪控制[J ] . 控制理论与应用, 2020, 37(5): 1018-1027.
YANG J, CHEN M, XIONG S X, et al. Average dwell time switching robust H ∞ tracking control for a tiltrotor aircraft[J ] . Control Theory and Applications, 2020, 37(5): 1018-1027.
LUO K B, SHI S, PENG C. Smooth tracking control for conversion mode of a tilt-rotor aircraft with switching modeling[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(11): 1591-1600.
LOMBAERTS T, KANESHIGE J, SCHUET S, et al. Nonlinear dynamic Inversion based attitude control for a hovering quad tiltrotor eVTOL vehicle[C]//Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA Press, 2019: 0134.
ZHANG J N, BHARDWAJ P, RAAB S A, et al. Control allocation framework for a tilt-rotor vertical take-off and landing transition aircraft configuration[C]//Proceedings of the 2018 Applied Aerodynamics Conference. Reston: AIAA Press, 2018: 3480.
郑琛, 唐鹏, 李秋实. 基于增量动态逆的倾转旋翼飞行器飞行控制律设计[J]. 兵工学报, 2019, 40(12): 2457-2466.
ZHENG C, TANG P, LI Q S. Design of flight control law of tilt-rotor aircraft based on incremental dynamic inversion[J]. Acta Armamentarii, 2019, 40(12): 2457-2466.
ÖNER K T, CETINSOY E, SIRIMOGLU E, et al. LQR and SMC stabilization of a new unmanned aerial vehicle[J]. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2009, 3: 1190-1195.
CARLSON E B. Optimal tiltrotor aircraft operations during power failure[D]. Minnesota: University of Minnesota, 1999.
KIM B M, CHOI K C, KIM B S. Trajectory tracking controller design using neural networks for tiltrotor UAV[C]//Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, AIAA Press, 2007: 6460.
杨喜立. VSTOL飞机过渡过程非线性控制研究[D]. 北京: 清华大学, 2008.
YANG X L. Research on Nonlinear Control of VSTOL Aircraft Transition Process[D]. Beijing: Tsinghua University, 2008.
LI S C, WANG Y, ZHANG H B. Research on adaptive feedforward control method for Tiltrotor Aircraft/Turboshaft engine system based on radial basis function neural network[J]. Aerospace Science and Technology, 2024, 150: 109180.
DURHAM W, BORDIGNON K A, BECK R. Aircraft control allocation[M]. Hoboken: John Wiley & Sons Inc., 2017.
DI FRANCESCO G, MATTEI M. Modeling and incremental nonlinear dynamic inversion control of a novel unmanned tiltrotor[J]. Journal of Aircraft, 2016, 53(1): 73-86.
马存旺, 文嘉瑜, 宋彦国. 倾转旋翼机冗余操纵的舵面分配策略和飞行转换路径分析[J]. 航空工程进展, 2019, 10(1): 36-45, 146.
MA C W, WEN J Y, SONG Y G. Analysis of control surface assignment strategy and flight conversion path for redundant manipulation of tilt-rotorcraft[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1): 36-45, 146.
MOUSAEI M, GENG J Y, KEIPOUR A, et al. Design, modeling and control for a tilt-rotor VTOL UAV in the presence of actuator failure[C]//Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2022: 4310-4317.
AVMC U A C, BERGER T, CORPORATION P A, et al. Piloted simulation evaluation of damage tolerant control for a tiltrotor[C]//Proceedings of the 80th Annual Vertical Flight Society Forum and Technology Display. Montreal: Vertical Flight Society, 2024.
MAISEL M D, GIULIANETTI D J, DUGAN A D C. The history of the XV-15 tilt rotor research aircraft: from concept to flight[M]. Washington: National Aeronautics and Space Administration, 2000.
DUNFORD P J, MARR R L. V-22 flight test update[J]. The Aeronautical Journal, 1997, 101(1006): 245-254.
BRUIN A D, SCHNEIDER O. Rotor-wing interaction phenomena for the ERICA tilt-wing rotorcraft configuration in the DNW-LLF wind tunnel[C]//Proceedings of the 41st European Rotorcraft Forum. Munich: Deutsche Gesellschaft fuer Luft und Raumfahrt, 2015: 1439-1448.
KIM C, CHUNG J. Aerodynamic analysis of tilt-rotor Unmanned Aerial Vehicle with computational fluid dynamics[J]. Journal of Mechanical Science and Technology, 2006, 20(4): 561-568.
YUKSEK B, VURUSKAN A, OZDEMIR U, et al. Transition flight modeling of a fixed-wing VTOL UAV[J]. Journal of Intelligent & Robotic Systems, 2016, 84(1): 83-105.
陈超. 小型倾转旋翼无人机过渡模态控制方法研究[D]. 长沙: 国防科技大学, 2017.
CHEN C. Research on transition mode control method of small tilt-rotor UAV[D]. Changsha: National University of Defense Technology, 2017.
ZHANG S T, YANG Y J, WANG X Y, et al. Modeling and dynamic analysis of a distributed propulsion tilt-rotor aircraft[C]//Proceedings of the AIAA AVIATION 2022 Forum. Reston: AIAA Press, 2022: AIAA2022-3871.
0
浏览量
40
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构