浏览全部资源
扫码关注微信
江苏大学电气信息工程学院,江苏 镇江 212013
[ "黄臻臻(2002- ),女,江苏大学电气信息工程学院硕士生,主要研究方向为无人农机系统、模型预测控制等。" ]
[ "孙金林(1994- ),男,博士,江苏大学电气信息工程学院副教授,主要研究方向为无人农机系统、抗干扰控制、智能自适应控制与优化等。" ]
[ "丁世宏(1983- ),男,博士,江苏大学电气信息工程学院院长、教授、博士生导师,主要研究方向为无人农机系统、滑模控制理论与应用等。" ]
收稿日期:2024-08-02,
修回日期:2024-10-18,
纸质出版日期:2025-03-15
移动端阅览
黄臻臻,孙金林,丁世宏.基于安全距离的无人农机路径跟踪抗扰预测控制[J].智能科学与技术学报,2025,07(01):86-97.
HUANG Zhenzhen,SUN Jinlin,DING Shihong.Anti-disturbance predictive control for path tracking of unmanned agricultural vehicles based on safety distance[J].Chinese Journal of Intelligent Science and Technology,2025,07(01):86-97.
黄臻臻,孙金林,丁世宏.基于安全距离的无人农机路径跟踪抗扰预测控制[J].智能科学与技术学报,2025,07(01):86-97. DOI: 10.11959/j.issn.2096-6652.202508.
HUANG Zhenzhen,SUN Jinlin,DING Shihong.Anti-disturbance predictive control for path tracking of unmanned agricultural vehicles based on safety distance[J].Chinese Journal of Intelligent Science and Technology,2025,07(01):86-97. DOI: 10.11959/j.issn.2096-6652.202508.
为提升无人农机在多障碍复杂作业场景下的路径跟踪性能,提出了一种基于安全距离的抗扰预测控制方案。该方案利用预测控制的自主学习能力,通过与作业场景的交互,实现了无人农机在复杂作业场景下的高效避障。首先,设计扩张状态观测器以精确估计农机系统中的未知扰动,并将其纳入非线性预测模型中,从而提升路径跟踪控制系统中状态预测的精度以及抗干扰性能。其次,设计无人农机参考点自动寻优算法,避免无人机在路径跟踪过程中过度转向。基于对数函数缩放构造新颖的避障惩罚项,确保在无人农机路径跟踪过程中与多重障碍始终保持预设的安全距离。最后,在成本函数中融入横向偏差与航向偏差信息,并结合避障惩罚项,通过在线求解非线性受限优化问题设计抗扰模型预测控制方案。仿真结果表明,该控制方案具有较高的路径跟踪精度,并能适应不同的安全距离和障碍物位置,实现有效避障。
To enhance the path tracking performance of unmanned agricultural vehicles in complex working scenarios with multiple obstacles
this paper proposes an anti-disturbance predictive control scheme based on safe distance. This control scheme leverages the autonomous learning capabilities of predictive control to achieve efficient obstacle avoidance maneuvers for unmanned agricultural vehicles in complex operational scenarios through interaction with the working environment. Initially
an extended state observer is designed to accurately estimate the unknown disturbance within the agricultural vehicle system and incorporate it into the nonlinear predictive model
thereby improving the precision of state prediction and disturbance rejection in the path tracking control system. Subsequently
an automatic optimization algorithm for the reference point of the agricultural vehicle is designed to prevent excessive steering during path tracking. Then
a novel obstacle avoidance penalty term is constructed based on logarithmic function scaling to ensure that the agricultural vehicle maintains a preset safe distance from multiple obstacles during path tracking. Building on this
the cost function is integrated with lateral offset and heading offset information
combined with the obstacle avoidance penalty function
and an anti-disturbance model predictive control scheme is constructed by solving the nonlinear constrained optimization problem online. Simulation results demonstrate that the control scheme proposed in this paper has superior path tracking accuracy and can effectively avoid obstacles while adapting to different safe distance settings and obstacle positions.
康孟珍, 王秀娟, 华净, 等. 平行农业: 迈向智慧农业的智能技术[J]. 智能科学与技术学报, 2019, 1(2): 107-117.
KANG M Z, WANG X J, HUA J, et al. Parallel agriculture: intelligent technology toward smart agriculture[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(2): 107-117.
FARAG W. Complex trajectory tracking using PID control for autonomous driving[J]. International Journal of Intelligent Transportation Systems Research, 2020, 18(2): 356-366.
LIU Y J, CUI D W. Application of optimal control method to path tracking problem of vehicle[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2019, 3(3): 10-3-03-0014.
DING C, DING S H, WEI X H, et al. Output feedback sliding mode control for path-tracking of autonomous agricultural vehicles[J]. Nonlinear Dynamics, 2022, 110(3): 2429-2445.
TIAN Y, YAO Q Q, HANG P, et al. A gain-scheduled robust controller for autonomous vehicles path tracking based on LPV system with MPC and H∞[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 9350-9362.
FU W J, LIU Y, ZHANG X M. Research on accurate motion trajectory control method of four-wheel steering AGV based on Stanley-PID control[J]. Sensors, 2023, 23(16): 7219.
丁晨, 魏新华, 梅珂琪. 农用拖拉机的自适应二阶滑模路径跟踪控制[J]. 控制理论与应用, 2023, 40(7): 1287-1295.
DING C, WEI X H, MEI K Q. Adaptive second-order sliding mode path tracking control for agricultural tractors[J]. Control Theory & Applications, 2023, 40(7): 1287-1295.
ZHOU B C, SU X, YU H J, et al. Research on path tracking of articulated steering tractor based on modified model predictive control[J]. Agriculture, 2023, 13(4): 871.
WANG M, NIU C H, WANG Z F, et al. Model and parameter adaptive MPC path tracking control study of rear-wheel-steering agricultural machinery[J]. Agriculture, 2024, 14(6): 823.
ISIDORI A. Nonlinear Control Systems[M]. Berlin: HeidelbergSpringer Berlin Heidelberg, 1989.
YAN Y D, WANG X F, MARSHALL B J, et al. Surviving disturbances: a predictive control framework with guaranteed safety[J]. Automatica, 2023, 158: 111238.
HU Y, LI B Y, JIANG B L, et al. Disturbance observer-based model predictive control for an unmanned underwater vehicle[J]. Journal of Marine Science and Engineering, 2024, 12(1): 94.
LI Q, LI H M, GAO J B, et al. Nonlinear-disturbance-observer-based model-predictive control for servo press drive[J]. IEEE Transactions on Industrial Electronics, 2024, 71(8): 8448-8458.
苏震, 刘殿勇, 孙达智, 等. 基于路径参数一致的水下机器人编队与避障控制[J]. 智能科学与技术学报, 2022, 4(4): 533-541.
SU Z, LIU D Y, SUN D Z, et al. Path parameter consensus-based formation and obstacle avoidance control of autonomous underwater vehicles[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 533-541.
沈甜雨, 李志伟, 范丽丽, 等. 具身智能驾驶: 概念、方法、现状与展望[J]. 智能科学与技术学报, 2024, 6(1): 17-32.
SHEN T Y, LI Z W, FAN L L, et al. Embodied intelligent driving: concept, methods, the state of the art and beyond[J]. Chinese Journal of Intelligent Science and Technology, 2024, 6(1): 17-32.
张强, 文闻, 周晓东, 等. 基于改进TD3算法的机械臂智能规划方法研究[J]. 智能科学与技术学报, 2022, 4(2): 223-232.
ZHANG Q, WEN W, ZHOU X D, et al. Research on the manipulator intelligent trajectory planning method based on the improved TD3 algorithm[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 223-232.
ZENG J, LI Z Y, SREENATH K. Enhancing feasibility and safety of nonlinear model predictive control with discrete-time control barrier functions[C]//Proceedings of the 2021 60th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2021: 6137-6144.
ZENG J, ZHANG B K, SREENATH K. Safety-critical model predictive control with discrete-time control barrier function[C]//Proceedings of the 2021 American Control Conference (ACC). Piscataway: IEEE Press, 2021: 3882-3889.
CAI Y Y, WANG G, ZUO Z Y, et al. Safety-critical control for nonholonomic tractor-trailer systems using control barrier functions and differential flatness[C]//Proceedings of the 2024 IEEE International Conference on Mechatronics and Automation (ICMA). Piscataway: IEEE Press, 2024: 864-869.
SOITINAHO R, OKSANEN T. Local navigation and obstacle avoidance for an agricultural tractor with nonlinear model predictive control[J]. IEEE Transactions on Control Systems Technology, 2023, 31(5): 2043-2054.
SÁNCHEZ I, D'JORGE A, RAFFO G V, et al. Nonlinear model predictive path following controller with obstacle avoidance[J]. Journal of Intelligent & Robotic Systems, 2021, 102(1): 16.
RUBAGOTTI M, TAUNYAZOV T, OMARALI B, et al. Semi-autonomous robot teleoperation with obstacle avoidance via model predictive control[J ] . IEEE Robotics and Automation Letters, 2019, 4(3): 2746-2753.
韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002, 9(3): 13-18.
HAN J Q. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18.
GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference, 2003. Piscataway: IEEE Press, 2003: 4989-4996.
WANG L, ZHAI Z Q, ZHU Z X, et al. Path tracking control of an autonomous tractor using improved Stanley controller optimized with multiple-population genetic algorithm[J]. Actuators, 2022, 11(1): 22.
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构