浏览全部资源
扫码关注微信
1.福建理工大学交通运输学院,福建 福州 350118
2.福建省北斗导航与智慧交通协同创新中心,福建 福州 350118
3.中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190
[ "陈德旺(1976- ),男,博士,福建理工大学交通运输学院闽江学者特聘教授,俄罗斯自然科学院外籍院士,欧洲自然科学院院士。主要研究方向为人工智能、模糊系统、智能交通系统。曾在20多个国际会议的项目委员会任职。自2015年以来,一直担任IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS的副编辑。发表论文200余篇,出版专著7部,获得科研奖励和人才奖励20余项。" ]
[ "刘俐俐(1999- ),女,福建理工大学交通运输学院硕士生,主要研究方向为模糊系统、自动驾驶。" ]
[ "赵文迪(1996- ),男,福建理工大学交通运输学院硕士生,主要研究方向为智能交通、模糊系统。" ]
[ "欧纪祥(2001- ),男,福建理工大学交通运输学院硕士生,主要研究方向为模糊系统、可解释人工智能。" ]
[ "孙艳焱(1999- ),女,福建理工大学交通运输学院硕士生,主要研究方向为模糊系统、线路规划。" ]
[ "郑楠(1984- ),中国科学院自动化研究所多模态人工智能系统全国重点实验室副研究员,主要研究方向为复杂系统、综合集成、数据挖掘。" ]
收稿日期:2024-03-08,
修回日期:2024-06-20,
纸质出版日期:2024-12-15
移动端阅览
陈德旺,刘俐俐,赵文迪等.基于模糊系统的定性与定量知识的综合集成[J].智能科学与技术学报,2024,06(04):445-455.
CHEN Dewang,LIU Lili,ZHAO Wendi,et al.Qualitative and quantitative knowledge of metasynthesis based on fuzzy system[J].Chinese Journal of Intelligent Science and Technology,2024,06(04):445-455.
陈德旺,刘俐俐,赵文迪等.基于模糊系统的定性与定量知识的综合集成[J].智能科学与技术学报,2024,06(04):445-455. DOI: 10.11959/j.issn.2096-6652.202447.
CHEN Dewang,LIU Lili,ZHAO Wendi,et al.Qualitative and quantitative knowledge of metasynthesis based on fuzzy system[J].Chinese Journal of Intelligent Science and Technology,2024,06(04):445-455. DOI: 10.11959/j.issn.2096-6652.202447.
综合集成法已被广泛应用于处理复杂系统相关问题,其核心是人机结合、从定性到定量的迭代求解,然而如何描述定性与定量知识,如何有效融合定性与定量知识仍是亟须解决的问题。模糊系统模拟了人脑推理过程,既可以利用专家的定性知识,也能够从数据中学习模糊规则,使用规则映射的方式实现对不确定性问题的系统决策。将模糊系统引入定性与定量知识的描述理解与融合过程,提出了一种基于模糊系统的可解释性综合集成法。该方法从定性和定量两个角度分别获取知识,再将两种知识综合集成,形成模糊规则库,完成模糊系统建模。该方法可以有效地将专家经验和数据学习相结合,增强模型的可解释性,提高复杂系统决策过程的鲁棒性和科学性,有望成为未来综合集成法研究的一种实现途径,更好地解决现实世界复杂系统的相关问题。
The metasynthesis has been widely used to solve complex system problems
and its core is the combination of human and machine
from qualitative to quantitative iterative solving. But how to describe and integrate qualitative and quantitative knowledge effectively is still the urgent problem to be solved. The fuzzy system simulates the reasoning process of human brain. It can not only use the qualitative knowledge of experts
but also learn fuzzy rules from the data
and use the way of rule mapping to realize the system decision of uncertain problems. By introducing the fuzzy system into the process of description
comprehension and fusion of qualitative and quantitative knowledge
the interpretable metasynthesis based on fuzzy system was proposed. Knowledge was obtained from quantitative and qualitative perspectives
and then the two kinds of knowledge were integrated to form a fuzzy rule base and completed the fuzzy system modeling. This method effectively combines expert experience with data learning
enhances the interpretability of the model
and improves the robustness and scientificity of the decision-making process of complex systems. This method is expected to be a realization method for the research of integrated method in the future
so as to better solve the problem of system complexity in the real world.
钱学森, 于景元, 戴汝为. 一个科学新领域: 开放的复杂巨系统及其方法论[J]. 自然杂志, 1990, 12(1): 3-10, 64.
QIAN X S, YU J Y, DAI R W. A new field of science—open complex giant system and its methodology[J]. Nature Magazine, 1990, 12(1): 3-10, 64.
钱学森. 一个科学新领域: 开放的复杂巨系统及其方法论[J]. 上海理工大学学报, 2011, 33(6): 526-532.
QIAN X S. A new field of science—open complex giant system and its methodology[J]. Journal of University of Shanghai for Science and Technology, 2011, 33(6): 526-532.
王雅娣, 曹长修, 任江洪, 等. 模糊RBF神经网络在专家系统知识库建立中的应用[J]. 计算机工程, 2005, 31(3): 175-177.
WANG Y D, CAO C X, REN J H, et al. Application of fuzzy RBF network in constructing knowledge base of expert system[J]. Computer Engineering, 2005, 31(3): 175-177.
王丹力, 郑楠, 刘成林. 综合集成研讨厅体系起源、发展现状与趋势[J]. 自动化学报, 2021, 47(8): 1822-1839.
WANG D L, ZHENG N, LIU C L. Hall for workshop of metasynthetic engineering: the origin, development status and future[J]. Acta Automatica Sinica, 2021, 47(8): 1822-1839.
戴汝为. "再谈开放的复杂巨系统"一文的影响[J]. 模式识别与人工智能, 2001, 14(2): 129-134.
DAI R W. The influence of Qian's talk on "open complex giant systems"[J]. Pattern Recognition and Artificial Intelligence, 2001, 14(2): 129-134.
田园, 翟凡, 冯珊. 宏观经济智能决策支持系统MEIDSS[J]. 系统工程理论与实践, 1997(3): 2-8.
TIAN Y, ZHAI F, FENG S. Macroeconomic intelligent decision support system (MEIDSS)[J]. Systems Engineering Theory and Practice, 1997(3): 2-8.
陈德旺, 蔡际杰, 黄允浒. 面向可解释性人工智能与大数据的模糊系统发展展望[J]. 智能科学与技术学报, 2019, 1(4): 327-334.
CHEN D W, CAI J J, HUANG Y H. Development prospect of fuzzy system oriented to interpretable artificial intelligence and big data[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(4): 327-334.
ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-53.
钟飞, 钟毓宁. Mamdani与Sugeno型模糊推理的应用研究[J]. 湖北工业大学学报, 2005, 20(2): 28-30.
ZHONG F, ZHONG Y N. The application research of Mamdani and Sugeno style fuzzy inference[J]. Journal of Hubei Polytechnic University, 2005, 20(2): 28-30.
TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(1): 116-132.
WANG L X, MENDEL J M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning[J]. IEEE Transactions on Neural Networks, 1992, 3(5): 807-814.
WANG L X, MENDEL J M. Generating fuzzy rules by learning from examples[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1992, 22(6): 1414-1427.
WANG L X, MENDEL J M. Back-propagation fuzzy system as nonlinear dynamic system identifiers[C]//Proceedings of the IEEE International Conference on Fuzzy Systems. Piscataway: IEEE Press, 2002: 1409-1418.
JANG J S R. ANFIS: adaptive-network-based fuzzy inference system[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665-685.
KOSKO B. Fuzzy systems as universal approximators[J]. IEEE Transactions on Computers, 1994, 43(11): 1329-1333.
KARNIK N N, MENDEL J M, LIANG Q. Type-2 fuzzy logic systems[J]. IEEE transactions on Fuzzy Systems, 1999, 7(6): 643-58.
JIN S Z, PENG J, XIE D. Towards MapReduce approach with dynamic fuzzy inference/interpolation for big data classification problems[C]//Proceedings of the 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing. Piscataway: IEEE Press, 2017: 407-413.
WU J, WANG C. Privacy preserving for big data based on fuzzy set[C]// Proceedings of the Cloud Computing and Security: 4th International Conference. Haikou: Springer, 2018: 651-659.
SHARMA D, SINGH AUJLA G, BAJAJ R. Deep neuro-fuzzy approach for risk and severity prediction using recommendation systems in connected health care[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(7): e4159.
USMAN M, CARIE A, MARAPELLI B, et al. A human-in-the-loop probabilistic CNN-fuzzy logic framework for accident prediction in vehicular networks[J]. IEEE Sensors Journal, 2021, 21(14): 15496-15503.
ZHAO W D, CHEN D W, ZHENG X Y, et al. Serial fuzzy system algorithm for predicting biological activity of anti-breast cancer compounds[J]. Applied Intelligence, 2023, 53(11): 13801-13814.
WANG L X. Fast training algorithms for deep convolutional fuzzy systems with application to stock index prediction[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(7): 1301-1314.
WU D, Mendel J M. Patch learning[J]. IEEE Transactions on Fuzzy Systems, 2019, 28(9): 1996-2008.
HUANG Y H, CHEN D W, ZHAO W D, et al. Deep patch learning algorithms with high interpretability for regression problems[J]. International Journal of Intelligent Systems, 2022, 37(11): 8239-8276.
TALPUR N, ABDULKADIR S J, ALHUSSIAN H, et al. Deep neuro-fuzzy system application trends, challenges, and future perspectives: a systematic survey[J]. Artificial Intelligence Review, 2023, 56(2): 865-913.
GARIBALDI J M, 陈虹宇, 李小双. 差异与学习: 模糊系统与模糊推理[J]. 智能科学与技术学报, 2019, 1(4): 319-326.
GARIBALDI J M, CHEN H Y, LI X S. Variation and learning: fuzzy system and fuzzy inference[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(4): 319-326.
张恒艳, 高中文, 李文龙, 等. 不确定T-S模糊系统的跟踪控制器设计[J]. 郑州大学学报(工学版), 2016, 37(2): 15-19.
ZHANG H Y, GAO Z W, LI W L, et al. Design of tracking controller for Uncertain T-S Fuzzy System[J]. Journal of Zhengzhou University (Engineering and Technology Edition), 2016, 37(2): 15-19.
付银环, 李新旺, 徐宝同, 等. 不确定性多目标模糊规划在水资源优化配置中的应用[J]. 南水北调与水利科技(中英文), 2023, 21(3): 470-479.
FU Y H, LI X W, XU B T, et al. Multi-objective fuzzy uncertainty planning in the application of the optimized allocation of water resources[J]. Journal of the south-north water diversion and water conservancy science and technology (both in English and Chinese), 2023, 21(3): 470-479.
陈德旺, 欧纪祥. 平行模糊控制: 虚实互动、相互增强的自学习控制方法[J]. 智能科学与技术学报, 2023, 5(2): 267-273.
CHEN D W, OU J X. Parallel fuzzy control: a self-learning control method with virtual-real interaction and mutual enhancement[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(2): 267-273.
杜宏庆, 陈德旺, 黄允浒, 等. 基于改进遗传算法与支持度的模糊系统优化建模方法[J]. 智能科学与技术学报, 2020, 2(2): 179-185.
DU H Q, CHEN D W, HUANG Y H, et al. A fuzzy system optimization modeling method based on improved genetic algorithm and support degree[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 179-185.
司景萍, 马继昌, 牛家骅, 等. 基于模糊神经网络的智能故障诊断专家系统[J]. 振动与冲击, 2017, 36(4): 164-171.
SI J P, MA J C, NIU J H, et al. An intelligent fault diagnosis expert system based on fuzzy neural network[J]. Journal of Vibration and Shock, 2017, 36(4): 164-171.
倪清桦, 郭超, 王飞跃. 平行戏剧: 新时代戏剧的人机协同创作与智能管理[J]. 智能科学与技术学报, 2023, 5(4): 436-445.
NI Q H, GUO C, WANG F Y. Parallel theaters: human-machine collaborative creation and intelligent management for theatrical art[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(4): 436-445.
张俊, 许沛东, 陈思远, 等. 物理-数据-知识混合驱动的人机混合增强智能系统管控方法[J]. 智能科学与技术学报, 2022, 4(4): 571-583.
ZHANG J, XU P D, CHEN S Y, et al. A hybrid physics-data-knowledge driven approach for human-machine hybrid-augmented intelligence-based system management and control[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 571-583.
莫红. 时变论域下的语言动力学轨迹[J]. 自动化学报, 2012, 38(10): 1585-1594.
MO H. Linguistic dynamic orbits in the time varying universe of discourse[J]. Acta Automatica Sinica, 2012, 38(10): 1585-1594.
莫红, 郝学新. 时变论域下红绿灯配时的语言动力学分析[J]. 自动化学报, 2017, 43(12): 2202-2212.
MO H, HAO X X. Linguistic dynamic analysis of traffic light timing design within the time-varying universe[J]. Acta Automatica Sinica, 2017, 43(12): 2202-2212.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构