浏览全部资源
扫码关注微信
西北民族大学语言与文化计算教育部重点实验室,甘肃 兰州 730030
[ "崔家豪(2000- ),男,西北民族大学硕士生,主要研究方向为社交网络对齐。" ]
[ "江涛(1983- ),男,博士,西北民族大学教授,主要研究方向为自然语言处理、社会计算和舆情分析。" ]
[ "徐梦瑶(2000- ),女,西北民族大学硕士生,主要研究方向为谣言抑制。" ]
收稿日期:2024-08-19,
修回日期:2024-11-04,
纸质出版日期:2024-12-15
移动端阅览
崔家豪,江涛,徐梦瑶.基于同质多层图卷积的多尺度网络对齐模型[J].智能科学与技术学报,2024,06(04):522-532.
CUI Jiahao,JIANG Tao,XU Mengyao.Multiscale network alignment model based on convolution of homogeneous multilayer graphs[J].Chinese Journal of Intelligent Science and Technology,2024,06(04):522-532.
崔家豪,江涛,徐梦瑶.基于同质多层图卷积的多尺度网络对齐模型[J].智能科学与技术学报,2024,06(04):522-532. DOI: 10.11959/j.issn.2096-6652.202445.
CUI Jiahao,JIANG Tao,XU Mengyao.Multiscale network alignment model based on convolution of homogeneous multilayer graphs[J].Chinese Journal of Intelligent Science and Technology,2024,06(04):522-532. DOI: 10.11959/j.issn.2096-6652.202445.
社交网络对齐作为网络科学的重要研究方法,已在多个领域广泛应用。现有方法通常依赖高质量的用户属性信息来完成特定任务,但隐私保护机制的存在使得这些信息难以获取。此外,若仅依赖网络拓扑结构,可能面临数据不足的挑战。针对上述问题,基于节点邻域特征和网络同质性提出一种基于同质多层图卷积的多尺度网络对齐模型。节点特征方面,通过K近邻算法聚合节点邻域信息建模深层网络结构,从而进行数据增强。图卷积方面,根据网络同质性构建同质度矩阵,对卷积过程进行引导,并以网络社区结构为基础来处理不同尺度的社交网络。在两个不同规模的现实社交网络实验结果表明,该方法能够有效提升社交网络对齐任务的性能。
Social network alignment as an important research method in network science has been widely used in several fields. Existing methods usually rely on high-quality user attribute information to complete specific tasks
but the existence of privacy protection mechanisms makes this information difficult to obtain. In addition
relying solely on network topologies can be challenged by insufficient data. In order to solve the above problems
a cross-network user alignment model based on the node neighborhood characteristics and network homogeneity was proposed. In terms of node characteristics
the K-nearest neighbor algorithm was used to aggregate node neighborhood information to model the deep network structure
so as to enhance the data. In terms of graph convolution
the convolution process was guided by the construction of a homogeneity matrix according to the network homogeneity
and the social networks of different scales were processed based on the network community structure. Experimental results on two real-world social networks of different scales show that the proposed method can effectively improve the performance of social network alignment tasks.
CAO X Z, YU Y. BASS: A bootstrapping approach for aligning heterogenous social networks[C]//Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2016: 459-475.
PENG C, XU K, WANG F, et al. Predicting information diffusion initiated from multiple sources in online social networks[C]//Proceedings of the 2013 Sixth International Symposium on Computational Intelligence and Design. Piscataway: IEEE Press, 2013: 96-99.
AHMAD M A, BORBORA Z, SRIVASTAVA J, et al. Link prediction across multiple social networks[C]//Proceedings of the 2010 IEEE International Conference on Data Mining Workshops. Piscataway: IEEE Press, 2010: 911-918.
MAN T, SHEN H W, HUANG J M, et al. Context-adaptive matrix factorization for multi-context recommendation[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 901-910.
TANG J L, GAO H J, LIU H, et al. eTrust: understanding trust evolution in an online world[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012: 253-261.
TAN S L, GUAN Z Y, CAI D, et al. Mapping users across networks by manifold alignment on hypergraph[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28(1): 159-165.
IOFCIU T, FANKHAUSER P, ABEL F, et al. Identifying users across social tagging systems[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2021, 5(1): 522-525.
ZHAO Y, LIU Y, GUO X Y, et al. User naming conventions mapping learning for social network alignment[C]//Proceedings of 2021 13th International Conference on Computer and Automation Engineering (ICCAE). Piscataway: IEEE Press, 2021: 36-42.
MALHOTRA A, TOTTI L, MEIRA JR. W, et al. Studying user footprints in different online social networks[C]//Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway: IEEE Press, 2012: 1065-1070.
RIEDERER C, KIM Y, CHAINTREAU A, et al. Linking users across domains with location data: theory and validation[C]//Proceedings of the 25th International Conference on World Wide Web. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee. New York: ACM Press,2016: 707-719.
LIU S Y, WANG S H, ZHU F D, et al. HYDRA: large-scale social identity linkage via heterogeneous behavior modeling[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2014: 51-62.
LIU J, ZHANG F, SONG X Y, et al. What's in a Name? an unsupervised approach to link users across communities[C]//Proceedings of the 6th ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2013: 495-504.
ZHANG H, KAN M Y, LIU Y, et al. Online social network profile linkage[C]//Proceedings of the 10th Asia Information Retrieval Societies Conference on Information Retrieval Technology. Cham: Springer International Publishing, 2014: 197-208.
ZHAO Y, LIU Y, GUO X Y, et al. User Naming conventions mapping learning for social network alignment[C]//Proceedings of the 2021 13th International Conference on Computer and Automation Engineering (ICCAE). Piscataway: IEEE Press, 2021: 36-42.
ZHAN Q Y, ZHANG J W, YU P S. Integrated anchor and social link predictions across multiple social networks[J]. Knowledge and Information Systems, 2019, 60(1): 303-326.
ZHANG J W, YU P S, ZHOU Z H. Meta-path based multi-network collective link prediction[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 1286-1295.
ZAFARANI R, LIU H. Connecting users across social media sites: a behavioral-modeling approach[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2013: 41-49.
KONG X N, ZHANG J W, YU P S. Inferring anchor links across multiple heterogeneous social networks[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM Press, 2013: 179-188.
MAN T, SHEN H, LIU S, et al. Predict anchor links across social networks via an embedding approach[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: ACM Press, 2016: 1823-1829.
LI X X, CAO Y N, LI Q, et al. RLINK: Deep reinforcement learning for user identity linkage[J]. World Wide Web, 2021, 24(1): 85-103.
CHEN H X, YIN H Z, SUN X G, et al. Multi-level graph convolutional networks for cross-platform anchor link prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2020: 1503-1511.
CHU X K, FAN X X, YAO D, et al. Cross-network embedding for multi-network alignment[C]//Proceedings of the World Wide Web Conference. New York: ACM Press, 2019: 273-284.
SAXENA S, CHANDRA J. SAlign: a graph neural attention framework for aligning structurally heterogeneous networks[J]. Journal of Artificial Intelligence Research, 2023, 77: 949-969.
LI Y, CUI H Y, LIU H L, et al. Triple-layer attention mechanism-based network embedding approach for anchor link identification across social networks[J]. Neural Computing and Applications, 2022, 34(4): 2811-2829.
LU M L, DAI Y L, ZHANG Z Q. Social network alignment: a bi-layer graph attention neural networks based method[J]. Applied Intelligence, 2022, 52(14): 16310-16333.
BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008(10): 10008.
ZHANG Y T, TANG J, YANG Z L, et al. COSNET: connecting heterogeneous social networks with local and global consistency[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2015: 1485-1494.
CHEN B Y, CHEN X L. MAUIL: Multilevel attribute embedding for semi-supervised user identity linkage[J]. Information Sciences, 2022, 593: 527-545.
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM Press, 2016: 3844-3852.
郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1): 1-3.
ZHENG N N. The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1): 1-3.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构